Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond

Monitoring and research of microcystins and environmental factors in a typical artificial... Freshwater aquaculture ponds are important artificially regulated aquatic ecosystems which provide a large number of freshwater fish products in China. The cyanobacteria bloom and microcystin (MC) pollution caused by anthropogenic eutrophication have attracted much attention due to their toxic effects. To provide an insight into the cyanobacterial problem in the ponds, the environmental parameters and MCs of a typical artificial pond in the Yangtze River Delta region of China were monitored and studied from May to December 2015. During the monitoring period, the ponds were in serious eutrophication with total phosphorus (TP) concentrations between 0.95 and 1.80 μg/L, and total nitrogen (TN) concentrations between 1.1 and 4.86 μg/L. High feed coefficient and high fish stock were the main reasons for the eutrophication. The results showed that the water temperature was the key factor that affected the cyanobacteria blooming in the pond. The chlorophyll a concentration was significantly positively correlated with the cyanobacteria density during the blooming season. MC-LR and MC-RR existed simultaneously and showed a significant positive correlation. The peak concentrations of dissolved MC-LR and MC-RR in the pond water were 40.6 and 4.7 μg/L, respectively, which is considered highly toxic. Free MC-LR and MC-RR were also found in the aquaculture products. MC-LR concentrations in the bighead carp (Aristichthys nobilis) liver and shrimp (Macrobrachium nipponense) muscle were up to 2.64 and 4.17 μg/kg, respectively. MC-RR concentration was up to 1.89 μg/kg in the black carp (Mylopharyngodon piceus) liver. The results implied the potential health risks for citizens and pets caused by current artificial freshwater aquaculture pond systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond

Loading next page...
 
/lp/springer_journal/monitoring-and-research-of-microcystins-and-environmental-factors-in-a-xHY6R3n5Px
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0956-4
Publisher site
See Article on Publisher Site

Abstract

Freshwater aquaculture ponds are important artificially regulated aquatic ecosystems which provide a large number of freshwater fish products in China. The cyanobacteria bloom and microcystin (MC) pollution caused by anthropogenic eutrophication have attracted much attention due to their toxic effects. To provide an insight into the cyanobacterial problem in the ponds, the environmental parameters and MCs of a typical artificial pond in the Yangtze River Delta region of China were monitored and studied from May to December 2015. During the monitoring period, the ponds were in serious eutrophication with total phosphorus (TP) concentrations between 0.95 and 1.80 μg/L, and total nitrogen (TN) concentrations between 1.1 and 4.86 μg/L. High feed coefficient and high fish stock were the main reasons for the eutrophication. The results showed that the water temperature was the key factor that affected the cyanobacteria blooming in the pond. The chlorophyll a concentration was significantly positively correlated with the cyanobacteria density during the blooming season. MC-LR and MC-RR existed simultaneously and showed a significant positive correlation. The peak concentrations of dissolved MC-LR and MC-RR in the pond water were 40.6 and 4.7 μg/L, respectively, which is considered highly toxic. Free MC-LR and MC-RR were also found in the aquaculture products. MC-LR concentrations in the bighead carp (Aristichthys nobilis) liver and shrimp (Macrobrachium nipponense) muscle were up to 2.64 and 4.17 μg/kg, respectively. MC-RR concentration was up to 1.89 μg/kg in the black carp (Mylopharyngodon piceus) liver. The results implied the potential health risks for citizens and pets caused by current artificial freshwater aquaculture pond systems.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off