Moments structure of ℓ 1-stochastic volatility models

Moments structure of ℓ 1-stochastic volatility models We consider Taylor’s stochastic volatility model (SVM) when the innovations of the hidden log-volatility process have a Laplace distribution (ℓ 1 exponential density), rather than the standard Gaussian distribution (ℓ 2) usually employed. Recently many investigations have employed ℓ 1 metric to allow better modeling of the abrupt changes of regime observed in financial time series. However, the estimation of SVM is known to be difficult because it is a non-linear with an hidden markov process. Moreover, an additional difficulty yielded by the use of ℓ 1 metric is the not differentiability of the likelihood function. An alternative consists in using a generalized or efficient method-of-moments (GMM/EMM) estimation. For this purpose, we derive here the moments and autocovariance function of such ℓ 1-based stochastic volatility models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Moments structure of ℓ 1-stochastic volatility models

Loading next page...
 
/lp/springer_journal/moments-structure-of-1-stochastic-volatility-models-DqIxHTXD8F
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-011-9459-4
Publisher site
See Article on Publisher Site

Abstract

We consider Taylor’s stochastic volatility model (SVM) when the innovations of the hidden log-volatility process have a Laplace distribution (ℓ 1 exponential density), rather than the standard Gaussian distribution (ℓ 2) usually employed. Recently many investigations have employed ℓ 1 metric to allow better modeling of the abrupt changes of regime observed in financial time series. However, the estimation of SVM is known to be difficult because it is a non-linear with an hidden markov process. Moreover, an additional difficulty yielded by the use of ℓ 1 metric is the not differentiability of the likelihood function. An alternative consists in using a generalized or efficient method-of-moments (GMM/EMM) estimation. For this purpose, we derive here the moments and autocovariance function of such ℓ 1-based stochastic volatility models.

Journal

Quality & QuantitySpringer Journals

Published: Mar 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off