Moments of Normally Distributed Random Matrices Given by Generating Series for Connection Coefficients — Explicit Bijective Computation

Moments of Normally Distributed Random Matrices Given by Generating Series for Connection... This paper is devoted to the explicit computation of some generating series for the connection coefficients of the double cosets of the hyperoctahedral group that arise in the study of the spectra of normally distributed random matrices. Aside their direct algebraic and combinatorial interpretations in terms of factorizations of permutations with specific properties, these connection coefficients are closely linked to the theory of zonal spherical functions and zonal polynomials. As shown by Hanlon, Stanley, Stembridge (1992), their generating series in the basis of power sum symmetric functions is equal to the mathematical expectation of the trace of (XUYU t ) n where X and Y are given symmetric matrices, U is a random real valued square matrix of standard normal distribution and n a non-negative integer. We provide the first explicit evaluation of these series in terms of monomial symmetric functions. Our development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a new bijective construction between partitioned locally orientable hypermaps and some decorated forests. As a corollary we provide a simple explicit evaluation of a similar generating series that gives the mathematical expectation of the trace of (XUYU*) n when U is complex valued and X and Y are given hermitian matrices and recover a former result by Morales and Vassilieva (2009). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Combinatorics Springer Journals

Moments of Normally Distributed Random Matrices Given by Generating Series for Connection Coefficients — Explicit Bijective Computation

Loading next page...
 
/lp/springer_journal/moments-of-normally-distributed-random-matrices-given-by-generating-D6LJQQ4X65
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Mathematics; Combinatorics
ISSN
0218-0006
eISSN
0219-3094
D.O.I.
10.1007/s00026-017-0356-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial