Moments of coinless quantum walks on lattices

Moments of coinless quantum walks on lattices The properties of the coinless quantum-walk model have not been as thoroughly analyzed as those of the coined model. Both evolve in discrete time steps, but the former uses a smaller Hilbert space, which is spanned merely by the site basis. Besides, the evolution operator can be obtained using a process of lattice tessellation, which is very appealing. The moments of the probability distribution play an important role in the context of quantum walks. The ballistic behavior of the mean square displacement indicates that quantum-walk-based algorithms are faster than random-walk-based ones. In this paper, we obtain analytical expressions for the moments of the coinless model on d-dimensional lattices by employing the methods of Fourier transforms and generating functions. The mean square displacement for large times is explicitly calculated for the one- and two-dimensional lattices, and using optimization methods, the parameter values that give the largest spread are calculated and compared with the equivalent ones of the coined model. Although we have employed asymptotic methods, our approximations are accurate even for small numbers of time steps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Moments of coinless quantum walks on lattices

Loading next page...
 
/lp/springer_journal/moments-of-coinless-quantum-walks-on-lattices-TD1VFHliem
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1042-9
Publisher site
See Article on Publisher Site

Abstract

The properties of the coinless quantum-walk model have not been as thoroughly analyzed as those of the coined model. Both evolve in discrete time steps, but the former uses a smaller Hilbert space, which is spanned merely by the site basis. Besides, the evolution operator can be obtained using a process of lattice tessellation, which is very appealing. The moments of the probability distribution play an important role in the context of quantum walks. The ballistic behavior of the mean square displacement indicates that quantum-walk-based algorithms are faster than random-walk-based ones. In this paper, we obtain analytical expressions for the moments of the coinless model on d-dimensional lattices by employing the methods of Fourier transforms and generating functions. The mean square displacement for large times is explicitly calculated for the one- and two-dimensional lattices, and using optimization methods, the parameter values that give the largest spread are calculated and compared with the equivalent ones of the coined model. Although we have employed asymptotic methods, our approximations are accurate even for small numbers of time steps.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 16, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off