Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule

Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule  The development and applications of a new class of water-soluble compounds suitable for molecular tagging diagnostics are described. These molecular complexes are formed by mixing a lumophore, an appropriate alcohol, and cyclodextrin. Using 1-BrNp as the lumophore, cyclohexanol is determined to be the most effective overall among the alcohols for which data are currently available. Information is provided for the design of experiments based on these complexes along with a less complex method for generating the grid patterns typically used for velocimetry. Implementation of a two-detector system is described which, in combination with a spatial correlation technique for determining velocities, relaxes the requirement that the initial tagging pattern be known a priori, eliminates errors in velocity estimates caused by variations in the grid pattern during an experiment, and makes it possible to study flows with non-uniform mixtures. This detection and analysis combination also solves one of the problems associated with using caged fluorescein to study high-speed flows. In addition to the traditional implementation for velocimetry, novel applications for studying the Lagrangian evolution of both reacting and non-reacting interfaces and obtaining combined passive scalar/velocity measurements are demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule

Loading next page...
 
/lp/springer_journal/molecular-tagging-velocimetry-and-other-novel-applications-of-a-new-qmzZk5UNMo
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050123
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial