Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse

Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse The application of pulsed electric field is emerging as a new technique for cancer therapy. The irreversible electroporation is the major bioelectric effect to induce cell death. The pulsed electric field is transferred to target deep tissue non-invasively and precisely when the pulse duration is in picosecond regime. In this proposed work, the intense electric field with 100 ps pulse width is used for irreversible electroporation. If the electric field strength increases, the pore in the cell membrane enlarges, causing a loss of membrane intactness and the direct killing of cancer cells. This phenomenon is explored by molecular dynamics simulation. The electric field in the range of 0.8–5 V/nm is used for membrane dynamics. The membrane deformation occurs at the electric field of 5 V/nm. Picosecond pulsed electric field has a wealth of ultra-band spectrum, with extended time and enhanced spatial resolution and low signal distortion. The ultra-wide band antenna is used as a pulse delivery system for non-invasive skin cancer therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse

Loading next page...
 
/lp/springer_journal/molecular-simulation-of-cell-membrane-deformation-by-picosecond-0tkgcXGtkC
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9812-y
Publisher site
See Article on Publisher Site

Abstract

The application of pulsed electric field is emerging as a new technique for cancer therapy. The irreversible electroporation is the major bioelectric effect to induce cell death. The pulsed electric field is transferred to target deep tissue non-invasively and precisely when the pulse duration is in picosecond regime. In this proposed work, the intense electric field with 100 ps pulse width is used for irreversible electroporation. If the electric field strength increases, the pore in the cell membrane enlarges, causing a loss of membrane intactness and the direct killing of cancer cells. This phenomenon is explored by molecular dynamics simulation. The electric field in the range of 0.8–5 V/nm is used for membrane dynamics. The membrane deformation occurs at the electric field of 5 V/nm. Picosecond pulsed electric field has a wealth of ultra-band spectrum, with extended time and enhanced spatial resolution and low signal distortion. The ultra-wide band antenna is used as a pulse delivery system for non-invasive skin cancer therapy.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 9, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off