Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi

Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi Random insertional mutagenesis is an efficient tool for studying molecular mechanisms of many genetically determined processes. An improved variant of this method is REMI (Restriction Enzyme Mediated Integration) mutagenesis. In this method, the insertion cassette is introduced into the recipient cell together with restriction endonuclease. As a result, the REMI cassette insertion occurs in sites recognized by the restriction enzyme. The use of restriction endonucleases enhances transformation rate and provides cassette insertion in virtually any locus. A mutation is tagged by the insertion cassette, which can be identified by isolating the REMI cassette together with the flanking genomic DNA regions. The review describes general requirements to REMI. The mechanisms of REMI mutagenesis are surveyed with special reference to yeast Saccharomyces cerevisiae. Special attention is given to the development and use of REMI for other lower eukaryotes (yeasts and mould fungi). Drawbacks of the method and perspectives of its use are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Molecular mechanisms of insertional mutagenesis in yeasts and mycelium fungi

Loading next page...
 
/lp/springer_journal/molecular-mechanisms-of-insertional-mutagenesis-in-yeasts-and-mycelium-9dOox8gEGT
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407080017
Publisher site
See Article on Publisher Site

Abstract

Random insertional mutagenesis is an efficient tool for studying molecular mechanisms of many genetically determined processes. An improved variant of this method is REMI (Restriction Enzyme Mediated Integration) mutagenesis. In this method, the insertion cassette is introduced into the recipient cell together with restriction endonuclease. As a result, the REMI cassette insertion occurs in sites recognized by the restriction enzyme. The use of restriction endonucleases enhances transformation rate and provides cassette insertion in virtually any locus. A mutation is tagged by the insertion cassette, which can be identified by isolating the REMI cassette together with the flanking genomic DNA regions. The review describes general requirements to REMI. The mechanisms of REMI mutagenesis are surveyed with special reference to yeast Saccharomyces cerevisiae. Special attention is given to the development and use of REMI for other lower eukaryotes (yeasts and mould fungi). Drawbacks of the method and perspectives of its use are discussed.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Aug 30, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off