Molecular mechanisms of HIV-1 genetic diversity

Molecular mechanisms of HIV-1 genetic diversity High genetic diversity of HIV-1 is the main factor behind the fact that HIV infection is widespread and difficult to treat. Although a limited number (or only one) of virus particles enters the blood upon infection, the particles are replicated in infected cells and rapidly produce new genetic variants that are resistant to the host immune system and antiretroviral drugs. This circumstance hampers the development of anti-HIV-1 vaccines and requires new antiretroviral drugs to be designed. The cause of the high variation of HIV-1 is related to the properties of its reverse transcriptase, which is error prone and often makes mistakes when transcribing virus RNA. Moreover, host APOBEC3-family proteins deaminate cytosines in the resulting minus strand DNA copy, leading to C/G–T/A transitions. The review considers several mechanisms that generate HIV-1 variants, including multiple recombination events between two different RNA copies colocated within one capsid. To understand the mechanisms of high genetic diversity of HIV-1 is essential for designing basically new approaches to treatment of HIV infection and AIDS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Biology Springer Journals

Molecular mechanisms of HIV-1 genetic diversity

Loading next page...
 
/lp/springer_journal/molecular-mechanisms-of-hiv-1-genetic-diversity-syIe02TYtl
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Human Genetics
ISSN
0026-8933
eISSN
1608-3245
D.O.I.
10.1134/S0026893317030153
Publisher site
See Article on Publisher Site

Abstract

High genetic diversity of HIV-1 is the main factor behind the fact that HIV infection is widespread and difficult to treat. Although a limited number (or only one) of virus particles enters the blood upon infection, the particles are replicated in infected cells and rapidly produce new genetic variants that are resistant to the host immune system and antiretroviral drugs. This circumstance hampers the development of anti-HIV-1 vaccines and requires new antiretroviral drugs to be designed. The cause of the high variation of HIV-1 is related to the properties of its reverse transcriptase, which is error prone and often makes mistakes when transcribing virus RNA. Moreover, host APOBEC3-family proteins deaminate cytosines in the resulting minus strand DNA copy, leading to C/G–T/A transitions. The review considers several mechanisms that generate HIV-1 variants, including multiple recombination events between two different RNA copies colocated within one capsid. To understand the mechanisms of high genetic diversity of HIV-1 is essential for designing basically new approaches to treatment of HIV infection and AIDS.

Journal

Molecular BiologySpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off