Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes

Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes Actin depolymerizing factor (ADF) is a key regulator of the organization of the actin cytoskeleton during various cellular activities. We found that ADF genes in Arabidopsis form a large family consisting of at least nine members, four of which were cloned and sequenced in this study. Comparison of genomic and cDNA sequences showed that the AtADF1, AtADF5, and AtADF6 genes all contain two introns at conserved positions. Analysis of transgenic Arabidopsis plants carrying promoter-GUS fusion constructs revealed that AtADF1 and AtADF6 are expressed in the vascular tissues of all organs, whereas expression of AtADF5 is restricted to the root tip meristem. GFP-AtADF1, GFP-AtADF5, and GFP-AtADF6 fusion proteins were found to bind to actin filaments in vivo, and to reorganize the actin cytoskeleton when transiently expressed in plant cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes

Loading next page...
 
/lp/springer_journal/molecular-identification-and-characterization-of-the-arabidopsis-HfVGPNFoH0
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010687911374
Publisher site
See Article on Publisher Site

Abstract

Actin depolymerizing factor (ADF) is a key regulator of the organization of the actin cytoskeleton during various cellular activities. We found that ADF genes in Arabidopsis form a large family consisting of at least nine members, four of which were cloned and sequenced in this study. Comparison of genomic and cDNA sequences showed that the AtADF1, AtADF5, and AtADF6 genes all contain two introns at conserved positions. Analysis of transgenic Arabidopsis plants carrying promoter-GUS fusion constructs revealed that AtADF1 and AtADF6 are expressed in the vascular tissues of all organs, whereas expression of AtADF5 is restricted to the root tip meristem. GFP-AtADF1, GFP-AtADF5, and GFP-AtADF6 fusion proteins were found to bind to actin filaments in vivo, and to reorganize the actin cytoskeleton when transiently expressed in plant cells.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off