Molecular genome organization in ciliates

Molecular genome organization in ciliates The review summarizes modern views on to the structure and differentiation of the nuclear apparatus in ciliates. The genetic system of ciliates (type Ciliophora) includes two types of nuclei: germinal micronucleus (MIC) and somatic macronucleus (MAC). The MAC development is associated with the rearrangement of the MIC genome, which includes chromosome fragmentation and chromatin diminution. The loss of DNA constitutes from 10–15% (Tetrahymena termophila) to 95–98% of the genome in spirotrichs (Stylonychia, Oxytricha, and Euplotes). Analysis of molecular mechanisms underlying nuclear dualism in ciliates promoted radical revision of the concept on the interactions and roles of MAC and MIC. The micronucleus, as an inactive element, is an ideal field for the invasion and further expansion of mobile genetic elements. Chromatin diminution plays the purifying role, restoring the native genome structure. The process of recognition of “genetic garbage” to be eliminated has many features in common with the siRNA-mediated heterochromatization. The presence of this mechanism in very early radiated eukaryotic lineages (Opistokonta and Chromalveolata), indicates that it arose at the earliest stages of the eukaryotic evolution, probably, as a mechanism promoting genome integrity and stability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Molecular genome organization in ciliates

Loading next page...
 
/lp/springer_journal/molecular-genome-organization-in-ciliates-Ux7CVdeuVh
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410090115
Publisher site
See Article on Publisher Site

Abstract

The review summarizes modern views on to the structure and differentiation of the nuclear apparatus in ciliates. The genetic system of ciliates (type Ciliophora) includes two types of nuclei: germinal micronucleus (MIC) and somatic macronucleus (MAC). The MAC development is associated with the rearrangement of the MIC genome, which includes chromosome fragmentation and chromatin diminution. The loss of DNA constitutes from 10–15% (Tetrahymena termophila) to 95–98% of the genome in spirotrichs (Stylonychia, Oxytricha, and Euplotes). Analysis of molecular mechanisms underlying nuclear dualism in ciliates promoted radical revision of the concept on the interactions and roles of MAC and MIC. The micronucleus, as an inactive element, is an ideal field for the invasion and further expansion of mobile genetic elements. Chromatin diminution plays the purifying role, restoring the native genome structure. The process of recognition of “genetic garbage” to be eliminated has many features in common with the siRNA-mediated heterochromatization. The presence of this mechanism in very early radiated eukaryotic lineages (Opistokonta and Chromalveolata), indicates that it arose at the earliest stages of the eukaryotic evolution, probably, as a mechanism promoting genome integrity and stability.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 30, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off