Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis

Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial... Recent data on the plant control of early stages of mutually beneficial (mutualistic) symbioses of legumes, the mechanisms of perception and transmission of the microsymbiont’s molecular signals in the macrosymbiont’s cells, and induction of the genetic programs of the development of symbiotic compartments and organs of the plant are summarized. It is demonstrated that the genetic system of the plant controlling the development of nitrogen-fixing symbiosis of legumes (symbiotic root nodules), which emerged 70–80 Ma ago, has undoubtedly evolved on the basis of the genetic system controlling the development of the symbiosis with arbuscular mycorrhizal fungi (which emerged 400–500 Ma ago). Interactions between genes and between gene products, as well as exchange of molecular signals, form the basis of mutually beneficial (mutualistic) plant-bacterium interactions. Even in the case of a highly specific nitrogen-fixing symbiosis of legumes (symbiotic nodules), the receptors perceiving the signal from root-nodule bacteria may function in different ways. The development of arbuscular mycorrhiza and nitrogen-fixing symbiosis in legumes is a multistep process involving hundreds of genes of both the macro- and microsymbionts. For the symbioses to develop successfully, these genes should act in a coordinated way in the newly formed superorganismal system. Further studies are necessary to shed light onto the complexity of the plant genetic control of the development of mutualistic symbioses in legumes and provide information required for improving their functions in adaptive plant-breeding systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis

Loading next page...
 
/lp/springer_journal/molecular-genetic-mechanisms-used-by-legumes-to-control-early-stages-qtFJX5eIJD
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409110039
Publisher site
See Article on Publisher Site

Abstract

Recent data on the plant control of early stages of mutually beneficial (mutualistic) symbioses of legumes, the mechanisms of perception and transmission of the microsymbiont’s molecular signals in the macrosymbiont’s cells, and induction of the genetic programs of the development of symbiotic compartments and organs of the plant are summarized. It is demonstrated that the genetic system of the plant controlling the development of nitrogen-fixing symbiosis of legumes (symbiotic root nodules), which emerged 70–80 Ma ago, has undoubtedly evolved on the basis of the genetic system controlling the development of the symbiosis with arbuscular mycorrhizal fungi (which emerged 400–500 Ma ago). Interactions between genes and between gene products, as well as exchange of molecular signals, form the basis of mutually beneficial (mutualistic) plant-bacterium interactions. Even in the case of a highly specific nitrogen-fixing symbiosis of legumes (symbiotic nodules), the receptors perceiving the signal from root-nodule bacteria may function in different ways. The development of arbuscular mycorrhiza and nitrogen-fixing symbiosis in legumes is a multistep process involving hundreds of genes of both the macro- and microsymbionts. For the symbioses to develop successfully, these genes should act in a coordinated way in the newly formed superorganismal system. Further studies are necessary to shed light onto the complexity of the plant genetic control of the development of mutualistic symbioses in legumes and provide information required for improving their functions in adaptive plant-breeding systems.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Nov 12, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off