Molecular genetic diagnostics for ventricular arrhythmias and sudden cardiac death syndromes

Molecular genetic diagnostics for ventricular arrhythmias and sudden cardiac death syndromes Inherited forms of ventricular arrhythmias are rare diseases, but a major cause for severe cardiac events, sudden unexplained death syndromes, and death in young adults, infants, and children. Each disorder is genetically heterogeneous (5–20 genes per disease) and molecular testing may include both core genes and less common disease genes as well. Owing to the rapid development and feasibility of sequencing technologies enabling a parallel analysis of several hundred genes up to a whole exome, disease mutations can be identified very efficiently, but have to be seen in the complexity and natural variance of the human genome. Precise phenotypic knowledge and advanced gene variant interpretation are important to ensure adequate patient diagnostics and management. This article focuses on the genetic causes of inherited arrhythmia forms predisposing patients to sudden cardiac death and discusses practical issues and skills for molecular testing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Herz Springer Journals

Molecular genetic diagnostics for ventricular arrhythmias and sudden cardiac death syndromes

Loading next page...
 
/lp/springer_journal/molecular-genetic-diagnostics-for-ventricular-arrhythmias-and-sudden-yWq0R7ijr3
Publisher
Springer Medizin
Copyright
Copyright © 2017 by Springer Medizin Verlag GmbH
Subject
Medicine & Public Health; Cardiology; Internal Medicine
ISSN
0340-9937
eISSN
1615-6692
D.O.I.
10.1007/s00059-017-4583-0
Publisher site
See Article on Publisher Site

Abstract

Inherited forms of ventricular arrhythmias are rare diseases, but a major cause for severe cardiac events, sudden unexplained death syndromes, and death in young adults, infants, and children. Each disorder is genetically heterogeneous (5–20 genes per disease) and molecular testing may include both core genes and less common disease genes as well. Owing to the rapid development and feasibility of sequencing technologies enabling a parallel analysis of several hundred genes up to a whole exome, disease mutations can be identified very efficiently, but have to be seen in the complexity and natural variance of the human genome. Precise phenotypic knowledge and advanced gene variant interpretation are important to ensure adequate patient diagnostics and management. This article focuses on the genetic causes of inherited arrhythmia forms predisposing patients to sudden cardiac death and discusses practical issues and skills for molecular testing.

Journal

HerzSpringer Journals

Published: Jun 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off