Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana

Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana Linker histones are ubiquitous structural components of chromatin that have been shown to influence the expression of a subset of genes in diverse organisms. Plants contain a minor linker histone variant that is expressed in most tissues of all organs, and is induced during drought stress. Based on reporter gene analysis in roots, His1–3 is expressed almost exclusively in emerging secondary roots in unstressed plants, but is primarily expressed in the root meristem and elongation zone of stressed plants. In shoots, expression is higher in younger tissues than older tissues. In order to investigate the function of H1–3, we have generated lines with altered levels of H1–3. Plants expressing an antisense His1–3 transcript exhibit a greatly impaired induction (5% of wild-type RNA levels during stress) of His1–3 transcripts in shoots during drought and contain decreased protein relative to wild-type control plants. In plants overexpressing His1–3, more H1–3 is bound to chromatin than in unstressed wild-type plants. None of the plants containing these transgenes display phenotypic aberrations or differences in water content during drought stress. Additionally, the expression of several drought-responsive genes is not significantly altered in lines misexpressing His1–3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/molecular-genetic-analysis-of-the-drought-inducible-linker-histone-jK7YeVg17U
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006302330879
Publisher site
See Article on Publisher Site

Abstract

Linker histones are ubiquitous structural components of chromatin that have been shown to influence the expression of a subset of genes in diverse organisms. Plants contain a minor linker histone variant that is expressed in most tissues of all organs, and is induced during drought stress. Based on reporter gene analysis in roots, His1–3 is expressed almost exclusively in emerging secondary roots in unstressed plants, but is primarily expressed in the root meristem and elongation zone of stressed plants. In shoots, expression is higher in younger tissues than older tissues. In order to investigate the function of H1–3, we have generated lines with altered levels of H1–3. Plants expressing an antisense His1–3 transcript exhibit a greatly impaired induction (5% of wild-type RNA levels during stress) of His1–3 transcripts in shoots during drought and contain decreased protein relative to wild-type control plants. In plants overexpressing His1–3, more H1–3 is bound to chromatin than in unstressed wild-type plants. None of the plants containing these transgenes display phenotypic aberrations or differences in water content during drought stress. Additionally, the expression of several drought-responsive genes is not significantly altered in lines misexpressing His1–3.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off