Molecular Genetic Analysis of Essential Tremor

Molecular Genetic Analysis of Essential Tremor Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locusDYT1on chromosome 9q32–34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22–25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT1 gene in probands did not reveal the major deletion 946–948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of θ = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3515 and a common “mutant” haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Loading next page...
 
/lp/springer_journal/molecular-genetic-analysis-of-essential-tremor-WyxJjuXBNd
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1021608426596
Publisher site
See Article on Publisher Site

Abstract

Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locusDYT1on chromosome 9q32–34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22–25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT1 gene in probands did not reveal the major deletion 946–948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of θ = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3515 and a common “mutant” haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off