Molecular evolution of cdc2 pseudogenes in spruce (Picea)

Molecular evolution of cdc2 pseudogenes in spruce (Picea) The p34cdc2 protein and other cyclin-dependent protein kinases (CDK) are important regulators of eukaryotic cell cycle progression. We have previously cloned a functional cdc2 gene from Picea abies and found it to be part of a family of related sequences, largely consisting of pseudogenes. We now report on the isolation of partial cdc2 pseudogenes from Picea engelmannii and Picea sitchensis, as well as partial functional cdc2 sequences from P. engelmannii, P. sitchensis and Pinus contorta. A high level of conservation between species was detected for these sequences. Phylogenetic analyses of pseudogene and functional cdc2 sequences, as well as the presence of shared insertions or deletions, support the division of most of the cdc2 pseudogenes into two subfamilies. New cdc2 pseudogenes appear to have been formed in Picea at a much higher rate than they have been obliterated by neutral mutations. The pattern of nucleotide changes in the cdc2 pseudogenes, as compared to a presumed ancestral functional cdc2 gene, was similar to that previously found in mammalian pseudogenes, with a strong bias for the transitions C to T and G to A, and the transversions C to A and G to T. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular evolution of cdc2 pseudogenes in spruce (Picea)

Loading next page...
 
/lp/springer_journal/molecular-evolution-of-cdc2-pseudogenes-in-spruce-picea-JERgdD5X7k
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005901413475
Publisher site
See Article on Publisher Site

Abstract

The p34cdc2 protein and other cyclin-dependent protein kinases (CDK) are important regulators of eukaryotic cell cycle progression. We have previously cloned a functional cdc2 gene from Picea abies and found it to be part of a family of related sequences, largely consisting of pseudogenes. We now report on the isolation of partial cdc2 pseudogenes from Picea engelmannii and Picea sitchensis, as well as partial functional cdc2 sequences from P. engelmannii, P. sitchensis and Pinus contorta. A high level of conservation between species was detected for these sequences. Phylogenetic analyses of pseudogene and functional cdc2 sequences, as well as the presence of shared insertions or deletions, support the division of most of the cdc2 pseudogenes into two subfamilies. New cdc2 pseudogenes appear to have been formed in Picea at a much higher rate than they have been obliterated by neutral mutations. The pattern of nucleotide changes in the cdc2 pseudogenes, as compared to a presumed ancestral functional cdc2 gene, was similar to that previously found in mammalian pseudogenes, with a strong bias for the transitions C to T and G to A, and the transversions C to A and G to T.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off