Molecular evolution of cdc2 pseudogenes in spruce (Picea)

Molecular evolution of cdc2 pseudogenes in spruce (Picea) The p34cdc2 protein and other cyclin-dependent protein kinases (CDK) are important regulators of eukaryotic cell cycle progression. We have previously cloned a functional cdc2 gene from Picea abies and found it to be part of a family of related sequences, largely consisting of pseudogenes. We now report on the isolation of partial cdc2 pseudogenes from Picea engelmannii and Picea sitchensis, as well as partial functional cdc2 sequences from P. engelmannii, P. sitchensis and Pinus contorta. A high level of conservation between species was detected for these sequences. Phylogenetic analyses of pseudogene and functional cdc2 sequences, as well as the presence of shared insertions or deletions, support the division of most of the cdc2 pseudogenes into two subfamilies. New cdc2 pseudogenes appear to have been formed in Picea at a much higher rate than they have been obliterated by neutral mutations. The pattern of nucleotide changes in the cdc2 pseudogenes, as compared to a presumed ancestral functional cdc2 gene, was similar to that previously found in mammalian pseudogenes, with a strong bias for the transitions C to T and G to A, and the transversions C to A and G to T. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular evolution of cdc2 pseudogenes in spruce (Picea)

Loading next page...
 
/lp/springer_journal/molecular-evolution-of-cdc2-pseudogenes-in-spruce-picea-JERgdD5X7k
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005901413475
Publisher site
See Article on Publisher Site

Abstract

The p34cdc2 protein and other cyclin-dependent protein kinases (CDK) are important regulators of eukaryotic cell cycle progression. We have previously cloned a functional cdc2 gene from Picea abies and found it to be part of a family of related sequences, largely consisting of pseudogenes. We now report on the isolation of partial cdc2 pseudogenes from Picea engelmannii and Picea sitchensis, as well as partial functional cdc2 sequences from P. engelmannii, P. sitchensis and Pinus contorta. A high level of conservation between species was detected for these sequences. Phylogenetic analyses of pseudogene and functional cdc2 sequences, as well as the presence of shared insertions or deletions, support the division of most of the cdc2 pseudogenes into two subfamilies. New cdc2 pseudogenes appear to have been formed in Picea at a much higher rate than they have been obliterated by neutral mutations. The pattern of nucleotide changes in the cdc2 pseudogenes, as compared to a presumed ancestral functional cdc2 gene, was similar to that previously found in mammalian pseudogenes, with a strong bias for the transitions C to T and G to A, and the transversions C to A and G to T.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off