Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis

Molecular dissection of a rice microtubule-associated RING finger protein and its potential role... Although a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions. By contrast, OsRMT1 is predominantly found in the nucleus and microtubules and its degradation is inhibited under salt stress. Domain dissection of OsRMT1 indicates that the N-terminal domain is required for microtubule targeting. Bimolecular fluorescence complementation analysis and degradation assay revealed that OsRMT1-interacted proteins localized in various organelles were degraded via the ubiquitin (Ub)/26S proteasome-dependent pathway. Interestingly, when OsRMT1 and its target proteins were co-expressed in N. benthamiana leaves, the protein–protein interactions appeared to take place mainly in the microtubules. Overexpression of OsRMT1 in Arabidopsis resulted in increased tolerance to salt stress. Our findings suggest that the abundance of microtubule-associated OsRMT1 is strictly regulated, and OsRMT1 may play a relevant role in salt stress response by modulating levels of its target proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis

Loading next page...
 
/lp/springer_journal/molecular-dissection-of-a-rice-microtubule-associated-ring-finger-5L2CXmTasX
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0375-1
Publisher site
See Article on Publisher Site

Abstract

Although a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions. By contrast, OsRMT1 is predominantly found in the nucleus and microtubules and its degradation is inhibited under salt stress. Domain dissection of OsRMT1 indicates that the N-terminal domain is required for microtubule targeting. Bimolecular fluorescence complementation analysis and degradation assay revealed that OsRMT1-interacted proteins localized in various organelles were degraded via the ubiquitin (Ub)/26S proteasome-dependent pathway. Interestingly, when OsRMT1 and its target proteins were co-expressed in N. benthamiana leaves, the protein–protein interactions appeared to take place mainly in the microtubules. Overexpression of OsRMT1 in Arabidopsis resulted in increased tolerance to salt stress. Our findings suggest that the abundance of microtubule-associated OsRMT1 is strictly regulated, and OsRMT1 may play a relevant role in salt stress response by modulating levels of its target proteins.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 10, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off