Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular Control of Nuclear and Subnuclear Targeting of the Plant CDK Inhibitor ICK1 and ICK1-Mediated Nuclear Transport of CDKA

Molecular Control of Nuclear and Subnuclear Targeting of the Plant CDK Inhibitor ICK1 and... ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLSICK1 could transport the much larger GUS (β-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLSICK1 is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK11–162 that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular Control of Nuclear and Subnuclear Targeting of the Plant CDK Inhibitor ICK1 and ICK1-Mediated Nuclear Transport of CDKA

Loading next page...
 
/lp/springer_journal/molecular-control-of-nuclear-and-subnuclear-targeting-of-the-plant-cdk-A9fedo3ecu

References (77)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-006-9019-9
pmid
16845478
Publisher site
See Article on Publisher Site

Abstract

ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLSICK1 could transport the much larger GUS (β-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLSICK1 is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK11–162 that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 15, 2006

There are no references for this article.