Molecular cloning, characterization and expression of cDNA encoding phosphoserine aminotransferase involved in phosphorylated pathway of serine biosynthesis from spinach

Molecular cloning, characterization and expression of cDNA encoding phosphoserine... Phosphoserine aminotransferase (PSA) catalyzes the conversion of phosphohydroxypyruvate to phosphoserine in the phosphorylated pathway of serine biosynthesis. A cDNA clone encoding PSA was isolated from the cDNA library of spinach (Spinacia oleracea L.) green leaves. Determination of the nucleotide sequence revealed the presence of an open reading frame encoding 430 amino acids, exhibiting 38-50% homology with the amino acid sequences of bacterial, yeast and animal PSA. It contains an N-terminal extension of ca. 60 amino acids in addition to the sequences from other organisms. The general features of plastidic transit peptide are observed in this N-terminal sequence, suggesting the plastid localization of the PSA protein encoded by this cDNA. The bacterial expression of the cDNA could functionally rescue the auxotrophy of serine in the serC- mutant, Escherichia coli KL282. The enzymatic activity of PSA was demonstrated in vitro in the extracts of E. coli over-expressing the cDNA. Southern blot analysis indicated the presence of a couple of related genes (Psa) in the spinach genome. RNA blot hybridization suggested the preferential expression of the Psa gene in the roots of green seedlings and in the suspension cells cultured under a dark condition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular cloning, characterization and expression of cDNA encoding phosphoserine aminotransferase involved in phosphorylated pathway of serine biosynthesis from spinach

Loading next page...
 
/lp/springer_journal/molecular-cloning-characterization-and-expression-of-cdna-encoding-l7qbZ03TiH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005730725764
Publisher site
See Article on Publisher Site

Abstract

Phosphoserine aminotransferase (PSA) catalyzes the conversion of phosphohydroxypyruvate to phosphoserine in the phosphorylated pathway of serine biosynthesis. A cDNA clone encoding PSA was isolated from the cDNA library of spinach (Spinacia oleracea L.) green leaves. Determination of the nucleotide sequence revealed the presence of an open reading frame encoding 430 amino acids, exhibiting 38-50% homology with the amino acid sequences of bacterial, yeast and animal PSA. It contains an N-terminal extension of ca. 60 amino acids in addition to the sequences from other organisms. The general features of plastidic transit peptide are observed in this N-terminal sequence, suggesting the plastid localization of the PSA protein encoded by this cDNA. The bacterial expression of the cDNA could functionally rescue the auxotrophy of serine in the serC- mutant, Escherichia coli KL282. The enzymatic activity of PSA was demonstrated in vitro in the extracts of E. coli over-expressing the cDNA. Southern blot analysis indicated the presence of a couple of related genes (Psa) in the spinach genome. RNA blot hybridization suggested the preferential expression of the Psa gene in the roots of green seedlings and in the suspension cells cultured under a dark condition.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off