Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice (Oryza sativa L.)

Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice... Monosaccharide transporters mediate the membrane transport of a variable range of monosaccharides, which plays a crucial role in sugar distribution throughout the plant. To investigate the significance of monosaccharide transporters for rice (Oryza sativa L.) seed development, cDNA of a new putative monosaccharide transporter gene OsMST4 was isolated. The deduced OsMST4 protein shows typical features of monosaccharide transporters, and shares high homology with other plant homologues. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that OsMST4 is a functional monosaccharide transporter capable of transporting glucose, fructose, mannose and galactose. Transcriptional analysis revealed that OsMST4 is expressed in all tested organs/tissues. In developing caryopses, its expression is high at the early and middle grain filling stages, and declines gradually to low levels after that. Further analysis revealed that it is expressed in both the maternal tissue and the filial tissue, with its highest expression in embryo. Cellular location in young caryopses through RNA in situ hybridization showed that OsMST4 mRNA mainly accumulates in the vascular parenchyma of the chalazal vein, cross-cells, nucellar tissue and endosperm. The expression pattern of OsMST4 was further confirmed by histochemical analysis of the OsMST4-promoter-β-glucuronidase (GUS) transgenic rice plants. These data indicate that OsMST4 is actively involved in monosaccharides supply for seed development during the course of grain filling. In addition, the cell type-specific expression patterns of OsMST4 in other sink and source tissues were also investigated, and its corresponding physiological roles were discussed. Plant Molecular Biology Springer Journals

Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice (Oryza sativa L.)

Loading next page...
Springer Netherlands
Copyright © 2007 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial