Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don

Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate... A 2-oxoglutarate-dependent dioxygenase (EC which catalyzes the 4-hydroxylation of desacetoxyvindoline was purified to homogeneity. Three oligopeptides isolated from a tryptic digest of the purified protein were microsequenced and one oligopeptide showed significant homology to hyoscyamine 6β-hydroxylase from Hyoscyamus niger. A 36-mer degenerate oligonucleotide based on this peptide sequence was used to screen a Catharanthus roseus cDNA library and three clones, cD4H-1 to -3, were isolated. Although none of the three clones were full-length, the open reading frame on each clone encoded a putative protein containing the sequence of all three peptides. Primer extension analysis suggested that cD4H-3, the longest cDNA clone, was missing 156 bp at the 5′ end of the clone and sequencing of the genomic clone, gD4H-8, confirmed these results. Southern blot analysis suggested that d4h is present as a single-copy gene in C. roseus which is a diploid plant, and the significant differences in the sequence of the 3′-UTR between cD4H-1 and -3 suggest that they represent dimorphic alleles of the same hydroxylase. The identity of the clone was further confirmed when extracts of transformed Escherichia coli expressed D4H enzyme activity. The D4H clone encoded a putative protein of 401 amino acids with a calculated molecular mass of 45.5 kDa and the amino acid sequence showed a high degree of similarity with those of a growing family of 2-oxoglutarate-dependent dioxygenases of plant and fungal origin. The similarity was not restricted to the dioxygenase protein sequences but was also extended to the gene structure and organization since the 205 and 1720 bp introns of d4h were inserted around the same highly conserved amino acid consensus sequences as those for e8 protein, hyoscyamine-6β-hydroxylase and ethylene-forming enzyme. These results provide further support that a common ancestral gene is responsible for the appearance of this family of dioxygenases. Plant Molecular Biology Springer Journals

Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don

Loading next page...
Kluwer Academic Publishers
Copyright © 1997 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial