Molecular characterization of isolates of anagyris vein yellowing virus, plantago mottle virus and scrophularia mottle virus – comparison of various approaches for tymovirus classification

Molecular characterization of isolates of anagyris vein yellowing virus, plantago mottle virus... The complete nucleotide sequences were determined for the genomic RNAs of three tymoviruses, i.e. isolates of anagyris vein yellowing virus (AVYV), plantago mottle virus (PlMoV) and scrophularia mottle virus (SrMV) which are all serologically closely related to ononis yellow mosaic virus (ibid) and to Nemesia ring necrosis virus (NeRNV), a recently described recombinant virus which is widely spread in commercially grown ornamental plant species belonging to the Scrophulariaceae . Total nucleotide and coat protein amino acid sequence identities revealed similar groupings in the genus tymovirus as serological studies did. The latter, however, tended to suggest much closer relationships than the molecular data and may fail to recognise the distinctiveness of new tymovirus species. The usefulness of various species demarcation criteria for the classification of tymoviruses is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Molecular characterization of isolates of anagyris vein yellowing virus, plantago mottle virus and scrophularia mottle virus – comparison of various approaches for tymovirus classification

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-isolates-of-anagyris-vein-yellowing-eyoQb2Dgiz
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Infectious Diseases; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-005-0545-6
Publisher site
See Article on Publisher Site

Abstract

The complete nucleotide sequences were determined for the genomic RNAs of three tymoviruses, i.e. isolates of anagyris vein yellowing virus (AVYV), plantago mottle virus (PlMoV) and scrophularia mottle virus (SrMV) which are all serologically closely related to ononis yellow mosaic virus (ibid) and to Nemesia ring necrosis virus (NeRNV), a recently described recombinant virus which is widely spread in commercially grown ornamental plant species belonging to the Scrophulariaceae . Total nucleotide and coat protein amino acid sequence identities revealed similar groupings in the genus tymovirus as serological studies did. The latter, however, tended to suggest much closer relationships than the molecular data and may fail to recognise the distinctiveness of new tymovirus species. The usefulness of various species demarcation criteria for the classification of tymoviruses is discussed.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off