Molecular characterization of infectious bursal disease virus (IBDV) isolated in Argentina indicates a regional lineage

Molecular characterization of infectious bursal disease virus (IBDV) isolated in Argentina... In Argentina, classical vaccines are used to control infectious bursal disease virus (IBDV); however, outbreaks of IBDV are frequently observed. This could be due to failures in the vaccination programs or to the emergence of new strains, which would be able to break through the protection given by vaccines. Hence, genetic characterization of the viruses responsible for the outbreaks that occurred in recent years is crucial for the evaluation of the control programs and the understanding of the epidemiology and evolution of IBDV. In this study, we characterized 51 field samples collected in Argentina (previously identified as IBDV positive) through the analysis of previously identified apomorphic sequences. Phylogenetic analysis of regVP2 showed that 42 samples formed a unique cluster (Argentinean lineage), seven samples were typical classical strains (one of them was a vaccine strain), and two belonged to the very virulent lineage (vvIBDV). Interestingly, when the analysis was performed on the regVP1 sequences, the field samples segregated similarly to regVP2; thus, we observed no evidence of a reassortment event in the Argentinean samples. Amino acid sequence analysis of regVP2 showed a particular pattern of residues in the Argentinean lineage, particularly the presence of T272, P289 and F296, which had not been reported before as signature sequences for any IBDV phenotype. Notably, the residue S254, characteristic of the antigenic variant, was not present in any of the Argentinean samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Molecular characterization of infectious bursal disease virus (IBDV) isolated in Argentina indicates a regional lineage

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-infectious-bursal-disease-virus-ibdv-Trg2OVk5mX
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2449-4
Publisher site
See Article on Publisher Site

Abstract

In Argentina, classical vaccines are used to control infectious bursal disease virus (IBDV); however, outbreaks of IBDV are frequently observed. This could be due to failures in the vaccination programs or to the emergence of new strains, which would be able to break through the protection given by vaccines. Hence, genetic characterization of the viruses responsible for the outbreaks that occurred in recent years is crucial for the evaluation of the control programs and the understanding of the epidemiology and evolution of IBDV. In this study, we characterized 51 field samples collected in Argentina (previously identified as IBDV positive) through the analysis of previously identified apomorphic sequences. Phylogenetic analysis of regVP2 showed that 42 samples formed a unique cluster (Argentinean lineage), seven samples were typical classical strains (one of them was a vaccine strain), and two belonged to the very virulent lineage (vvIBDV). Interestingly, when the analysis was performed on the regVP1 sequences, the field samples segregated similarly to regVP2; thus, we observed no evidence of a reassortment event in the Argentinean samples. Amino acid sequence analysis of regVP2 showed a particular pattern of residues in the Argentinean lineage, particularly the presence of T272, P289 and F296, which had not been reported before as signature sequences for any IBDV phenotype. Notably, the residue S254, characteristic of the antigenic variant, was not present in any of the Argentinean samples.

Journal

Archives of VirologySpringer Journals

Published: May 31, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off