Molecular characterization of four β-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica

Molecular characterization of four β-tubulin genes from dinitroaniline susceptible and resistant... Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, resistant biotypes of goosegrass (Eleusine indica) developed in previously susceptible wild-type populations. We have previously reported that α-tubulin missense mutations correlate with dinitroaniline response phenotypes (Drp) (Plant Cell 10: 297–308, 1998). In order to ascertain associations of other tubulins with dinitroaniline resistance, four β-tubulin cDNA classes (designated TUB1, TUB2, TUB3, and TUB4) were isolated from dinitroaniline-susceptible and -resistant biotypes. Sequence analysis of the four β-tubulin cDNA classes identified no missense mutations. Identified nucleotide substitutions did not result in amino acid replacements. These results suggest that the molecular basis of dinitroaniline resistance in goosegrass differs from those of colchicine/dinitroaniline cross-resistant Chlamydomonas reinhardtii and benzimidazole-resistant fungi and yeast. Expression of the four β-tubulins was highest in inflorescences. This is in contrast to α-tubulin TUA1 that is expressed predominantly in roots. Collectively, these results imply that β-tubulin genes are not associated with dinitroaniline resistance in goosegrass. Phylogenetic analysis of the four β-tubulins, together with three α-tubulins, suggests that the resistant biotype developed independently in multiple locations rather than spreading from one location. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization of four β-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-four-tubulin-genes-from-dinitroaniline-lvYx9FqR8w
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006108412801
Publisher site
See Article on Publisher Site

Abstract

Dinitroaniline herbicides are antimicrotubule drugs that bind to tubulins and inhibit polymerization. As a result of repeated application of dinitroaniline herbicides, resistant biotypes of goosegrass (Eleusine indica) developed in previously susceptible wild-type populations. We have previously reported that α-tubulin missense mutations correlate with dinitroaniline response phenotypes (Drp) (Plant Cell 10: 297–308, 1998). In order to ascertain associations of other tubulins with dinitroaniline resistance, four β-tubulin cDNA classes (designated TUB1, TUB2, TUB3, and TUB4) were isolated from dinitroaniline-susceptible and -resistant biotypes. Sequence analysis of the four β-tubulin cDNA classes identified no missense mutations. Identified nucleotide substitutions did not result in amino acid replacements. These results suggest that the molecular basis of dinitroaniline resistance in goosegrass differs from those of colchicine/dinitroaniline cross-resistant Chlamydomonas reinhardtii and benzimidazole-resistant fungi and yeast. Expression of the four β-tubulins was highest in inflorescences. This is in contrast to α-tubulin TUA1 that is expressed predominantly in roots. Collectively, these results imply that β-tubulin genes are not associated with dinitroaniline resistance in goosegrass. Phylogenetic analysis of the four β-tubulins, together with three α-tubulins, suggests that the resistant biotype developed independently in multiple locations rather than spreading from one location.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off