Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions

Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica... Previously, it was found that the dnaK1 gene of the halotolerant cyanobacterium Aphanothece halophytica encodes a polypeptide of 721 amino acids which has a long C-terminal region rich in acidic amino acid residues. To understand whether the A. halophytica DnaK1 possesses chaperone activity at high salinity and to clarify the role of the extra C-terminal amino acids, a comparative study examined three kinds of DnaK molecules for ATPase activity as well as the refolding activity of other urea-denatured proteins under various salinity conditions. DnaK1s from A. halophytica and Synechococcus sp. PCC 7942 and the C-terminal deleted A. halophytica DnaK1 were expressed in Escherichia coli and purified. The ATPase activity of A. halophytica DnaK1 was very high even at high salinity (1.0 M NaCl or KCl), whereas this activity in Synechococcus PCC 7942 DnaK1 decreased with increasing concentrations of NaCl or KCl. The salt dependence on the refolding activity of urea-denatured lactate dehydrogenase by DnaK1s was similar to that of ATPase activity of the respective DnaK1s. The deletion of the C-terminal amino acids of A. halophytica DnaK1 had no effect on the ATPase activity, but caused a significant decrease in the refolding activity of other denatured proteins. These facts indicate that the extra C-terminal region of A. halophytica DnaK1 plays an important role in the refolding of other urea-denatured proteins at high salinity. Furthermore, it was shown that DnaK1 could assist the copper binding of precursor apo-plastocyanin as well as that of mature apo-plastocyanin during the folding of these copper proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-dnak-from-the-halotolerant-8yZfnAlze5
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006273124726
Publisher site
See Article on Publisher Site

Abstract

Previously, it was found that the dnaK1 gene of the halotolerant cyanobacterium Aphanothece halophytica encodes a polypeptide of 721 amino acids which has a long C-terminal region rich in acidic amino acid residues. To understand whether the A. halophytica DnaK1 possesses chaperone activity at high salinity and to clarify the role of the extra C-terminal amino acids, a comparative study examined three kinds of DnaK molecules for ATPase activity as well as the refolding activity of other urea-denatured proteins under various salinity conditions. DnaK1s from A. halophytica and Synechococcus sp. PCC 7942 and the C-terminal deleted A. halophytica DnaK1 were expressed in Escherichia coli and purified. The ATPase activity of A. halophytica DnaK1 was very high even at high salinity (1.0 M NaCl or KCl), whereas this activity in Synechococcus PCC 7942 DnaK1 decreased with increasing concentrations of NaCl or KCl. The salt dependence on the refolding activity of urea-denatured lactate dehydrogenase by DnaK1s was similar to that of ATPase activity of the respective DnaK1s. The deletion of the C-terminal amino acids of A. halophytica DnaK1 had no effect on the ATPase activity, but caused a significant decrease in the refolding activity of other denatured proteins. These facts indicate that the extra C-terminal region of A. halophytica DnaK1 plays an important role in the refolding of other urea-denatured proteins at high salinity. Furthermore, it was shown that DnaK1 could assist the copper binding of precursor apo-plastocyanin as well as that of mature apo-plastocyanin during the folding of these copper proteins.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off