Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress

Molecular characterization of Brassica napus NAC domain transcriptional activators induced in... Subtractive expressed sequence tag analysis and screening of cDNA libraries derived from Brassica napus leaves subjected to mechanical wounding, flea beetle feeding or cold temperatures revealed eight genes encoding NAC-domain transcription factors. The genes were found to be differentially regulated in response to biotic and abiotic stresses including wounding, insect feeding, Sclerotinia sclerotiorum infection, cold shock and dehydration. Five BnNAC proteins were orthologous to Arabidopsis thaliana ATAF1 or ATAF2 and gave rise to developmental abnormalities similar to the A. thaliana nam and cuc mutants when expressed ectopically in A. thaliana. Transgenic lines expressing BnNAC14, exhibited large leaves, thickened stems and hyper-developed lateral root systems similar to that observed with A. thaliana NAC1, but also were delayed in bolting and lacked an apical dominant tap root. Several of the BnNAC proteins were capable of activating gene expression in yeast and recognized an element within the CaMV35S promoter. A yeast two-hybrid screen revealed that BnNAC14 interacted with other select BnNAC proteins in vitro and identified an additional BnNAC gene, BnNAC485. The protein interaction and transcriptional activation domains were mapped by deletion analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-brassica-napus-nac-domain-yZn07D7z0o
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000006944.61384.11
Publisher site
See Article on Publisher Site

Abstract

Subtractive expressed sequence tag analysis and screening of cDNA libraries derived from Brassica napus leaves subjected to mechanical wounding, flea beetle feeding or cold temperatures revealed eight genes encoding NAC-domain transcription factors. The genes were found to be differentially regulated in response to biotic and abiotic stresses including wounding, insect feeding, Sclerotinia sclerotiorum infection, cold shock and dehydration. Five BnNAC proteins were orthologous to Arabidopsis thaliana ATAF1 or ATAF2 and gave rise to developmental abnormalities similar to the A. thaliana nam and cuc mutants when expressed ectopically in A. thaliana. Transgenic lines expressing BnNAC14, exhibited large leaves, thickened stems and hyper-developed lateral root systems similar to that observed with A. thaliana NAC1, but also were delayed in bolting and lacked an apical dominant tap root. Several of the BnNAC proteins were capable of activating gene expression in yeast and recognized an element within the CaMV35S promoter. A yeast two-hybrid screen revealed that BnNAC14 interacted with other select BnNAC proteins in vitro and identified an additional BnNAC gene, BnNAC485. The protein interaction and transcriptional activation domains were mapped by deletion analysis.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off