Molecular characterization of banana virus X (BVX), a novel member of the Flexiviridae family

Molecular characterization of banana virus X (BVX), a novel member of the Flexiviridae family A novel virus was identified in banana ( Musa spp). Analysis of the last 2917 nucleotides of its positive strand genomic RNA showed five open reading frames corresponding, from 5′ to 3′, to a truncated ORF coding for a replication-associated protein, three ORFs coding for a movement-associated triple gene block (TGB) and a capsid protein (CP) gene. This genome organization is similar to that of some members of the Flexiviridae family such as potexviruses and foveaviruses. This virus was named Banana virus X (BVX). Comparative sequence analysis showed that BVX is only distantly related to other members of the Flexiviridae family, in which it appears to define a new genus. BVX produces defective RNAs derived from its genomic RNA by non-homologous recombination. Three distinct pairs of donor/acceptor recombination sites involving short direct nucleotide repeats were characterized, accounting for deletions of 1268, 1358 and 1503 nucleotides. Contrary to the situation encountered for Potexviruses, these recombination sites are located within the TGB1 and CP genes and result in a truncated TGB1 protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Molecular characterization of banana virus X (BVX), a novel member of the Flexiviridae family

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-banana-virus-x-bvx-a-novel-member-of-the-90GH6PIcf2
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Infectious Diseases; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-005-0567-0
Publisher site
See Article on Publisher Site

Abstract

A novel virus was identified in banana ( Musa spp). Analysis of the last 2917 nucleotides of its positive strand genomic RNA showed five open reading frames corresponding, from 5′ to 3′, to a truncated ORF coding for a replication-associated protein, three ORFs coding for a movement-associated triple gene block (TGB) and a capsid protein (CP) gene. This genome organization is similar to that of some members of the Flexiviridae family such as potexviruses and foveaviruses. This virus was named Banana virus X (BVX). Comparative sequence analysis showed that BVX is only distantly related to other members of the Flexiviridae family, in which it appears to define a new genus. BVX produces defective RNAs derived from its genomic RNA by non-homologous recombination. Three distinct pairs of donor/acceptor recombination sites involving short direct nucleotide repeats were characterized, accounting for deletions of 1268, 1358 and 1503 nucleotides. Contrary to the situation encountered for Potexviruses, these recombination sites are located within the TGB1 and CP genes and result in a truncated TGB1 protein.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off