Molecular Characterization of an Inwardly Rectifying K+ Channel from HeLa Cells

Molecular Characterization of an Inwardly Rectifying K+ Channel from HeLa Cells Previous patch-clamp studies have shown that the potassium permeability of the plasma membrane in HeLa cells, a cell line derived from an epidermoid carcinoma of the cervix, is controlled by various K+-selective pores including an IRK1 type inwardly rectifying K+ channel. We used the sequence previously reported for the human heart Kir2.1 channel to design a RT-PCR strategy for cloning the IRK1 channel in HeLa cells. A full-length clone of 1.3 kb was obtained that was identical to the human cardiac Kir2.1 inward rectifier. The nature of the cloned channel was also confirmed in a Northern blot analysis where a signal of 5.3 kb corresponding to the molecular weight expected for a Kir2.1 channel transcript was identified not only in HeLa cells, but also in WI-38, ECV304 and bovine aortic endothelial cells. The HeLa IRK1 channel cDNA was subcloned in an expression vector (pMT21) and injected into Xenopus oocytes. Cell-attached and inside-out single channel recordings obtained from injected oocytes provided evidence for a voltage-independent K+-selective channel with current/voltage characteristics typical of a strong inward rectifier. The single channel conductance for inward currents measured in 200 mm K2SO4 conditions was estimated at 40 ± 1 pS (n= 3), for applied voltages ranging from −100 to −160 mV, in agreement with the unitary conductance for the IRK1 channel identified in HeLa cells. In addition, the single channel conductance for inward currents, Γ, was found to vary as a function of αK, the external K+ ion activity, according to Γ=Γ0 [αK]δ with Γ0= 3.3 pS and δ= 0.5. Single channel recordings from injected oocytes also provided evidence of a voltage-dependent block by external Cs+ and Ba2+. The presence of 500 μm Cs+ caused a voltage-dependent flickering, typical of a fast channel blocking process which resulted in a reduction of the channel open probability at increasingly negative membrane potential values. The fractional electrical distance computed for the Cs+ blocking site was greater than 1 indicating a multiple ion channel occupation. In contrast, external Ba2+ at concentrations ranging from 25 to 100 μm caused a slow channel block, consistent with the binding of a single Ba2+ ion at a site located at half the membrane span. It is concluded on the basis of these observations that HeLa cells expressed a Kir2.1 type inwardly rectifying channel likely to be involved in maintaining and regulating the cell resting potential. The Journal of Membrane Biology Springer Journals

Molecular Characterization of an Inwardly Rectifying K+ Channel from HeLa Cells

Loading next page...
Copyright © Inc. by 1999 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial