Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf senescence in sweet potato

Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf... The structure and expression of a novel senescence-associated gene (SPA15) of sweet potato were characterized. The protein coding region of the gene consists of 13 exons encoding 420 amino acids. Apparent homologues of this sweet potato gene are found in a variety of dicot and monocot plants, but not in animals or microorganisms. Examination of the expression patterns of the SPA15gene in sweet potato reveals that the transcripts of SPA15 are specifically induced in the senescing leaves, and the temporal profile of SPA15 protein accumulation is correlated with that of SPA15 transcripts. Studies on the distribution of SPA15 homologue in rice plants also indicate that SPA15 homologue is up-regulated specifically in senescing rice leaves. Treatment of detached sweet potato leaves with phytohormones including ethylene, methyl jasmonate, salicylic acid and abscisic acid resulted in a high-level induction of SPA15. Immunoelectron microscopic analysis demonstrates that SPA15 is specifically associated with the cell wall. The potential role for SPA15 during leaf senescence is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf senescence in sweet potato

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-a-novel-senescence-associated-gene-spa15-B1QvExAmNB
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1022334820332
Publisher site
See Article on Publisher Site

Abstract

The structure and expression of a novel senescence-associated gene (SPA15) of sweet potato were characterized. The protein coding region of the gene consists of 13 exons encoding 420 amino acids. Apparent homologues of this sweet potato gene are found in a variety of dicot and monocot plants, but not in animals or microorganisms. Examination of the expression patterns of the SPA15gene in sweet potato reveals that the transcripts of SPA15 are specifically induced in the senescing leaves, and the temporal profile of SPA15 protein accumulation is correlated with that of SPA15 transcripts. Studies on the distribution of SPA15 homologue in rice plants also indicate that SPA15 homologue is up-regulated specifically in senescing rice leaves. Treatment of detached sweet potato leaves with phytohormones including ethylene, methyl jasmonate, salicylic acid and abscisic acid resulted in a high-level induction of SPA15. Immunoelectron microscopic analysis demonstrates that SPA15 is specifically associated with the cell wall. The potential role for SPA15 during leaf senescence is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off