Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa)

Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa) A cDNA clone encoding alanine aminotransferase (AlaAT) has isolated from randomly sequenced clones derived from a cDNA library of maturing rice seeds by comparison to previously identified genes. The deduced amino acid sequence was 88% and 91% homologous to those of the enzymes from barley and broomcorn millet (Panicum miliaceum), respectively. Using this cDNA as a probe, we isolated and sequenced the corresponding genomic clone. Comparison of the sequences of the cDNA and the genomic gene revealed that the coding region of the gene was interrupted by 14 introns 66 to 1547 bp long. Northern and western blotting analyses showed that the gene was expressed at high levels in developing seeds. When the 5′-flanking region between −930 and +85 from the site of initiation of transcription was fused to a reporter gene for β-glucuronidase (GUS) and then introduced into the rice genome, histochemical staining revealed strong GUS activity in the inner endosperm tissue of developing seeds and weak activity in root tips. Similar tissue-specific expression was also detected by in situ hybridization. These results suggest that AlaAT is involved in nitrogen metabolism during the maturation of rice seed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa)

Loading next page...
 
/lp/springer_journal/molecular-characterization-of-a-gene-for-alanine-aminotransferase-from-vl27Azdhbp
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006156214716
Publisher site
See Article on Publisher Site

Abstract

A cDNA clone encoding alanine aminotransferase (AlaAT) has isolated from randomly sequenced clones derived from a cDNA library of maturing rice seeds by comparison to previously identified genes. The deduced amino acid sequence was 88% and 91% homologous to those of the enzymes from barley and broomcorn millet (Panicum miliaceum), respectively. Using this cDNA as a probe, we isolated and sequenced the corresponding genomic clone. Comparison of the sequences of the cDNA and the genomic gene revealed that the coding region of the gene was interrupted by 14 introns 66 to 1547 bp long. Northern and western blotting analyses showed that the gene was expressed at high levels in developing seeds. When the 5′-flanking region between −930 and +85 from the site of initiation of transcription was fused to a reporter gene for β-glucuronidase (GUS) and then introduced into the rice genome, histochemical staining revealed strong GUS activity in the inner endosperm tissue of developing seeds and weak activity in root tips. Similar tissue-specific expression was also detected by in situ hybridization. These results suggest that AlaAT is involved in nitrogen metabolism during the maturation of rice seed.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off