Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia

Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde... Maize cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is encoded by a small multi-gene family consisting of gpc1, gpc2, gpc3 and gpc4. GAPC3/4 protein is synthesized in roots during anoxic conditions and is known to be one of the ‘anaerobic polypeptides’. We further analyzed the gpc gene family by isolating full-length cDNA clones of gpc2, gpc3, gpc4 and genomic clones of gpc2 and gpc4. The deduced amino acid sequence of GAPC4 has 99.4% identity with that of GAPC3 as compared to only 81% with either GAPC1 or GAPC2 amino acid sequence. Based on the deduced amino acid sequence identity we designated GAPC1 and GAPC2 as group I (97% identical) and GAPC3 and GAPC4 as group II (99.4% identical). As previously reported for gpc3, transcript levels were also induced for gpc4 by anaerobiosis. Neither heat shock, cold nor salt stress induced the expression of gpc3 or gpc4. In contrast, the transcript accumulation of gpc1 and gpc2 either remained constitutive or decreased in response to anoxia. The upstream regions of gpc2 and gpc4 contain typical eukaryotic promoter features with transcription start points at 76 and 68 bp upstream of their respective translation initiation sites. Transient expression analysis of gpc4 promoter-β-glucuronidase (GUS) reporter gene constructs in bombarded maize suspension culture cells was used to examine the role of 5′-flanking sequence of gpc4. The gpc4 promoter (- 1997 to + 39 bp) was sufficient to induce GUS activity approximately three-fold in response to anaerobiosis. 5′-unidirectional deletion analysis revealed that the critical region of gpc4 required for its induced expression lies between - 290 and - 157. This region has reverse-oriented putative ‘anaerobic response elements’, G-box like sequences, and a GC motif similar to that previously defined as a regulatory element of maize adh1 and Arabidopsis adh, as well as the sequences found in other environmentally inducible genes. The relevance of these elements in conferring anaerobic induction of gpc4 gene expression is discussed. Plant Molecular Biology Springer Journals

Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia

Loading next page...
Kluwer Academic Publishers
Copyright © 1997 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial