Molecular characterization and genome-wide mutations in porcine anal atresia candidate gene GLI2

Molecular characterization and genome-wide mutations in porcine anal atresia candidate gene GLI2 Anal atresia (i.e., anorectal malformations) is a severe disorder that occurs during the development of the distal hindgut in infants, swine, and many other mammals and has an unclear genetic background. Recently, the Shh-responsive transcription factor GLI2 has been shown as essential to the normal development of the hindgut, and QTL studies in pigs revealed that this gene may be an important candidate for anal atresia (AA). We used the pig as the model to study the contribution of GLI2 to AA. We revealed the genomic structure of the porcine GLI2 gene with 14 exons and obtained the porcine GLI2 mRNA sequence with a 4,656-bp ORF coding a 1,551-amino acid protein. We further scanned the genome-wide mutations in this gene by direct sequencing using three genomic DNA pools from the AA pigs, full-sibs of AA pigs, and unaffected pigs, respectively. Finally, 30 single nucleotide polymorphisms (SNPs) and one intronic 9-nucleotide (nt) deletion were identified. Of these SNPs, 23 are intronic, 6 are synonymous, and 1 (446 G>A) in exon 8 is nonsynonymous (365Met >Ile). NCOI-RFLP of the 446 G>A polymorphism suggested that the predominant genotypes were all GG and AG in the three pig groups. In addition, there was no significant difference among the three groups in allele frequencies, which demonstrated that this locus was not associated with AA in pigs. However, the 12 SNPs encompassing exon 4 to exon 8 showed strong linkage disequilibrium in the AA pigs, which indicated that the mutations somewhere in this region may contribute to AA in pigs. Therefore, further investigation in this region is needed to elucidate the underlying mutations involved in the porcine AA. Mammalian Genome Springer Journals

Molecular characterization and genome-wide mutations in porcine anal atresia candidate gene GLI2

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Cell Biology; Anatomy; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial