Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis

Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2... Sterol C24 methyltransferase (SMT2) genes governing the pattern of phytosterols synthesized in higher plants have been studied in Glycine seedlings and wild-type and engineered Arabidopsis thaliana plants. The SMT2 genes of soybean (SMT2-1 and SMT2-2) previously cloned and characterized (Neelakandan et al. 2009) were shown to complement the SMT deficient cvp1 mutant Arabidopsis plants, consistent with their role in regulation of 24-alkyl sterol-controlled plant physiology. Further analysis of these genes showed that environmental cues, including dehydration, cold, and abscisic acid induced differential changes in transcript levels of the SMT2 during soybean seedling growth. Sterol analyses of transgenic Arabidopsis seeds originating in variant constructs of AtHMGR1, GmSMT1, and GmSMT2 engineered in seeds showed relevant modifications in the ratio of 24-methyl to 24-ethyl sterol in the direction of sitosterol formation. To provide insight into the structural features of the sterol gene that affects transcript regulation, the upstream promoter sequences of soybean SMT2 genes were cloned and characterized. Sequence analysis revealed several important cis-elements and transcription factor binding sites. The analysis of promoter-GUS fusions in transgenic Arabidopsis plants revealed shared and distinct expression features in different developmental stages and tissues. The data are interpreted to imply that SMT2 is an important contributor to normal plant growth and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis

Loading next page...
1
 
/lp/springer_journal/molecular-characterization-and-functional-analysis-of-glycine-max-ygGeEQwv9Z
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9692-6
Publisher site
See Article on Publisher Site

Abstract

Sterol C24 methyltransferase (SMT2) genes governing the pattern of phytosterols synthesized in higher plants have been studied in Glycine seedlings and wild-type and engineered Arabidopsis thaliana plants. The SMT2 genes of soybean (SMT2-1 and SMT2-2) previously cloned and characterized (Neelakandan et al. 2009) were shown to complement the SMT deficient cvp1 mutant Arabidopsis plants, consistent with their role in regulation of 24-alkyl sterol-controlled plant physiology. Further analysis of these genes showed that environmental cues, including dehydration, cold, and abscisic acid induced differential changes in transcript levels of the SMT2 during soybean seedling growth. Sterol analyses of transgenic Arabidopsis seeds originating in variant constructs of AtHMGR1, GmSMT1, and GmSMT2 engineered in seeds showed relevant modifications in the ratio of 24-methyl to 24-ethyl sterol in the direction of sitosterol formation. To provide insight into the structural features of the sterol gene that affects transcript regulation, the upstream promoter sequences of soybean SMT2 genes were cloned and characterized. Sequence analysis revealed several important cis-elements and transcription factor binding sites. The analysis of promoter-GUS fusions in transgenic Arabidopsis plants revealed shared and distinct expression features in different developmental stages and tissues. The data are interpreted to imply that SMT2 is an important contributor to normal plant growth and development.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 24, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off