Molecular characterisation and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.)

Molecular characterisation and expression of a wound-inducible cDNA encoding a novel... A lucerne (alfalfa, Medicago sativa) stem cDNA library was screened with a cinnamyl-alcohol dehydrogenase (CAD) cDNA probe from tobacco (Nicotiana tabacum cv. Samsun). Two distinctly different cDNA clones (54% identical) were isolated and identified as putative CAD-encoding cDNAs by comparison of their nucleotide sequences with those of CAD-encoding DNA sequences from other plant species. One of the cDNAs, MsaCad2, was found to be 99.4% identical at the nucleotide level to the previously isolated lucerne cad cDNA which encodes a CAD isoform involved in lignin biosynthesis. The other cDNA, MsaCad1, has not been reported previously in lucerne, and encodes a protein related to the ELI3 class of elicitor-inducible defence-related plant proteins. The MsaCad1- and MsaCad2-encoded proteins were expressed in Escherichia coli and CAD1 was shown to be active with a range of cinnamyl, benzyl and aliphatic aldehyde substrates, while CAD2 was specific for the cinnamyl aldehydes only. Each of the respective genes is present as one or two copies. The MsaCad1 gene is expressed most actively in stem and floral tissue, whereas MsaCad2 is most actively expressed in stem, hypocotyl and root tissue. In stem tissue, expression of both genes occurs predominantly in internodes 4 and 5 (from the apex). MsaCad2, in contrast to MsaCad1, is not significantly expressed in the top three internodes of the stem. Both MsaCad1 and MsaCad2 are wound-inducible, and the wound-responsiveness of each gene is modulated by salicylic acid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Molecular characterisation and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.)

Loading next page...
 
/lp/springer_journal/molecular-characterisation-and-expression-of-a-wound-inducible-cdna-ier970wSjX
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006381630494
Publisher site
See Article on Publisher Site

Abstract

A lucerne (alfalfa, Medicago sativa) stem cDNA library was screened with a cinnamyl-alcohol dehydrogenase (CAD) cDNA probe from tobacco (Nicotiana tabacum cv. Samsun). Two distinctly different cDNA clones (54% identical) were isolated and identified as putative CAD-encoding cDNAs by comparison of their nucleotide sequences with those of CAD-encoding DNA sequences from other plant species. One of the cDNAs, MsaCad2, was found to be 99.4% identical at the nucleotide level to the previously isolated lucerne cad cDNA which encodes a CAD isoform involved in lignin biosynthesis. The other cDNA, MsaCad1, has not been reported previously in lucerne, and encodes a protein related to the ELI3 class of elicitor-inducible defence-related plant proteins. The MsaCad1- and MsaCad2-encoded proteins were expressed in Escherichia coli and CAD1 was shown to be active with a range of cinnamyl, benzyl and aliphatic aldehyde substrates, while CAD2 was specific for the cinnamyl aldehydes only. Each of the respective genes is present as one or two copies. The MsaCad1 gene is expressed most actively in stem and floral tissue, whereas MsaCad2 is most actively expressed in stem, hypocotyl and root tissue. In stem tissue, expression of both genes occurs predominantly in internodes 4 and 5 (from the apex). MsaCad2, in contrast to MsaCad1, is not significantly expressed in the top three internodes of the stem. Both MsaCad1 and MsaCad2 are wound-inducible, and the wound-responsiveness of each gene is modulated by salicylic acid.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off