Molecular basis of pituitary dysfunction in mouse and human

Molecular basis of pituitary dysfunction in mouse and human Review Incorporating Mouse Genome Mammalian Genome 12, 485–494 (2001). © Springer-Verlag New York Inc. 2001 DOI: 10.1007/s003350040002 Lisa J. Cushman, Sally A. Camper Department of Human Genetics, 4301 MSRBIII, 1500 W. Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109-0638, USA Received: 20 December 2000/ Accepted: 5 February 2001 The pituitary gland functions as an intermediary between the brain the process of pituitary gland organogenesis has been described in and the peripheral endocrine organs of the body (Tortora and recent years (Table 1). Homeobox genes critical for the develop- Grabowski 1996). In the context of a complex system of feedback ment of the anterior pituitary include the LIM homeodomain tran- control, the pituitary gland relays signals from the hypothalamus to scription factor Lhx3, the ‘paired’-like homeodomain transcription its target organs by secreting various hormones. These hormone factors Hesx1 (also known as Rathke’s pouch homeobox or Rpx) signals, which are transmitted throughout the endocrine system, and Prop1, and the POU homeodomain transcription factor Pit1 reflect the current homeostatic conditions of the body. Mecha- (Li et al. 1990; Sheng et al. 1996; Sornson et al. 1996; Dattani et nisms of compensation, including the regulation of gene transcrip- al. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Molecular basis of pituitary dysfunction in mouse and human

Loading next page...
 
/lp/springer_journal/molecular-basis-of-pituitary-dysfunction-in-mouse-and-human-KhXgTSMK3C
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350040002
Publisher site
See Article on Publisher Site

Abstract

Review Incorporating Mouse Genome Mammalian Genome 12, 485–494 (2001). © Springer-Verlag New York Inc. 2001 DOI: 10.1007/s003350040002 Lisa J. Cushman, Sally A. Camper Department of Human Genetics, 4301 MSRBIII, 1500 W. Medical Center Drive, University of Michigan Medical School, Ann Arbor, Michigan 48109-0638, USA Received: 20 December 2000/ Accepted: 5 February 2001 The pituitary gland functions as an intermediary between the brain the process of pituitary gland organogenesis has been described in and the peripheral endocrine organs of the body (Tortora and recent years (Table 1). Homeobox genes critical for the develop- Grabowski 1996). In the context of a complex system of feedback ment of the anterior pituitary include the LIM homeodomain tran- control, the pituitary gland relays signals from the hypothalamus to scription factor Lhx3, the ‘paired’-like homeodomain transcription its target organs by secreting various hormones. These hormone factors Hesx1 (also known as Rathke’s pouch homeobox or Rpx) signals, which are transmitted throughout the endocrine system, and Prop1, and the POU homeodomain transcription factor Pit1 reflect the current homeostatic conditions of the body. Mecha- (Li et al. 1990; Sheng et al. 1996; Sornson et al. 1996; Dattani et nisms of compensation, including the regulation of gene transcrip- al.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off