Molecular and comparative mapping for heading date and plant height in oat

Molecular and comparative mapping for heading date and plant height in oat Selection of oat genotypes combining earliness and short plant height could stimulate oat cultivation worldwide. However, the mechanisms involved with the genetic control of heading date and plant height traits are not fully understood to date. This study aimed to identify genomic regions controlling heading date and plant height in two hulled by naked oat populations and to compare these genomic regions with that of other grass species. Recombinant inbred lines of each population and their parents were genotyped by a 6 K BeadChip Illumina Infinium array and assessed for heading date and plant height in two sowing dates. The quantitative trait loci (QTL) affecting these traits were detected by simple interval mapping. The two oat populations showed different genetic mechanisms controlling heading date. A major QTL was identified in one of the populations, mapped into the ‘Mrg33’ consensus linkage group from the current oat map. Two other QTL were detected into the ‘Mrg02’ and ‘Mrg24’ groups, in the second population. On the other hand, both populations presented the same genomic region controlling plant height. Six SNP markers, mapping on the same linkage group within each population, were associated with the trait, regardless the sowing date, explaining more than 20% of the phenotypic variation. Five of these six markers were mapped into three different linkage groups on the oat consensus map. Genomic regions associated with heading date and plant height in oat seem to be conserved in Oryza sativa L. and Brachypodium distachyon. Our results provide valuable information for marker-assisted selection in oats, allowing selection for earliness and plant height on early segregating generations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euphytica Springer Journals

Molecular and comparative mapping for heading date and plant height in oat

Loading next page...
 
/lp/springer_journal/molecular-and-comparative-mapping-for-heading-date-and-plant-height-in-SyeGBhvwHW
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Pathology; Plant Physiology; Biotechnology
ISSN
0014-2336
eISSN
1573-5060
D.O.I.
10.1007/s10681-018-2182-7
Publisher site
See Article on Publisher Site

Abstract

Selection of oat genotypes combining earliness and short plant height could stimulate oat cultivation worldwide. However, the mechanisms involved with the genetic control of heading date and plant height traits are not fully understood to date. This study aimed to identify genomic regions controlling heading date and plant height in two hulled by naked oat populations and to compare these genomic regions with that of other grass species. Recombinant inbred lines of each population and their parents were genotyped by a 6 K BeadChip Illumina Infinium array and assessed for heading date and plant height in two sowing dates. The quantitative trait loci (QTL) affecting these traits were detected by simple interval mapping. The two oat populations showed different genetic mechanisms controlling heading date. A major QTL was identified in one of the populations, mapped into the ‘Mrg33’ consensus linkage group from the current oat map. Two other QTL were detected into the ‘Mrg02’ and ‘Mrg24’ groups, in the second population. On the other hand, both populations presented the same genomic region controlling plant height. Six SNP markers, mapping on the same linkage group within each population, were associated with the trait, regardless the sowing date, explaining more than 20% of the phenotypic variation. Five of these six markers were mapped into three different linkage groups on the oat consensus map. Genomic regions associated with heading date and plant height in oat seem to be conserved in Oryza sativa L. and Brachypodium distachyon. Our results provide valuable information for marker-assisted selection in oats, allowing selection for earliness and plant height on early segregating generations.

Journal

EuphyticaSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off