Modulation of Native TREK-1 and Kv1.4 K+ Channels by Polyunsaturated Fatty Acids and Lysophospholipids

Modulation of Native TREK-1 and Kv1.4 K+ Channels by Polyunsaturated Fatty Acids and... The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Modulation of Native TREK-1 and Kv1.4 K+ Channels by Polyunsaturated Fatty Acids and Lysophospholipids

Loading next page...
 
/lp/springer_journal/modulation-of-native-trek-1-and-kv1-4-k-channels-by-polyunsaturated-oGLqGtNJjr
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0616-0
Publisher site
See Article on Publisher Site

Abstract

The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off