Modulation of microstructure and interface properties of co-sputter derived Hf1−xTixO2 thin films with various Ti content

Modulation of microstructure and interface properties of co-sputter derived Hf1−xTixO2 thin... Hf1−xTixO2 dielectric thin films were deposited on Si (100) substrates by RF reactive co-sputtering with the variation in RF power of Ti target. The compositional, morphological, structural and optical properties of Hf1−xTixO2 films with various Ti concentration were systematically investigated by X-ray photoelectron spectroscopy (XPS), Field emmission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectroscopy techniques respectively. The electrical properties of the co-sputtered thin films were studied by capacitance–voltage and current density–voltage measurements. The XRD study has shown the enhancement in the the crystalline property of Hf1−xTixO2 film up to 60 W of Ti target power and amorphous like behaviour was observed for higher RF power. The Ti content in Hf1−xTixO2 was calculated from the XPS measurements, where the Ti content was found to be increased with rise in RF power. FESEM micrographs depict the increase in grain size upto the RF power 60 W. The Raman spectrum of the Hf1−xTixO2 film has shown that the major generated phase was titanium-substituted monoclinic phase of HfO2. The flatband voltage (Vfb) and oxide charge density (Qox) were extracted from the high frequency (1 MHz) C–V curve. The Dit has a minimum value for the film deposited at 60 W RF power of Ti target. The leakage current density of the Hf1−xTixO2 films was found to be minimum for the RF power 60 W. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Modulation of microstructure and interface properties of co-sputter derived Hf1−xTixO2 thin films with various Ti content

Loading next page...
 
/lp/springer_journal/modulation-of-microstructure-and-interface-properties-of-co-sputter-lExCOcFVhA
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7061-9
Publisher site
See Article on Publisher Site

Abstract

Hf1−xTixO2 dielectric thin films were deposited on Si (100) substrates by RF reactive co-sputtering with the variation in RF power of Ti target. The compositional, morphological, structural and optical properties of Hf1−xTixO2 films with various Ti concentration were systematically investigated by X-ray photoelectron spectroscopy (XPS), Field emmission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectroscopy techniques respectively. The electrical properties of the co-sputtered thin films were studied by capacitance–voltage and current density–voltage measurements. The XRD study has shown the enhancement in the the crystalline property of Hf1−xTixO2 film up to 60 W of Ti target power and amorphous like behaviour was observed for higher RF power. The Ti content in Hf1−xTixO2 was calculated from the XPS measurements, where the Ti content was found to be increased with rise in RF power. FESEM micrographs depict the increase in grain size upto the RF power 60 W. The Raman spectrum of the Hf1−xTixO2 film has shown that the major generated phase was titanium-substituted monoclinic phase of HfO2. The flatband voltage (Vfb) and oxide charge density (Qox) were extracted from the high frequency (1 MHz) C–V curve. The Dit has a minimum value for the film deposited at 60 W RF power of Ti target. The leakage current density of the Hf1−xTixO2 films was found to be minimum for the RF power 60 W.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off