Modulation of Activity of Known Cytotoxic Ruthenium(III) Compound (KP418) with Hampered Transmembrane Transport in Electrochemotherapy In Vitro and In Vivo

Modulation of Activity of Known Cytotoxic Ruthenium(III) Compound (KP418) with Hampered... To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro. In addition, platinum compound cisplatin (CDDP) and ruthenium(III) compound NAMI-A were included in the experiments as reference compounds. Our results show that electroporation leads to increased cellular accumulation and cytotoxicity of KP418 in murine melanoma cell lines with low and high metastatic potential, B16-F1 and B16-F10, but not in murine fibrosarcoma cell line SA-1 in vitro which is probably due to variable effectiveness of ECT in different cell lines and tumors. Electroporation does not potentiate the cytotoxicity of KP418 as prominently as the cytotoxicity of CDDP. We also showed that the metastatic potential of cells which survived ECT with KP418 or NAMI-A does not change in vitro: resistance to detachment, invasiveness, and re-adhesion of cells after ECT is not affected. Experiments in murine tumor models B16-F1 and SA-1 showed that ECT with KP418 does not have any antitumor effect while ECT with CDDP induces significant dose-dependent tumor growth delay in the two tumor models used in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Modulation of Activity of Known Cytotoxic Ruthenium(III) Compound (KP418) with Hampered Transmembrane Transport in Electrochemotherapy In Vitro and In Vivo

Loading next page...
 
/lp/springer_journal/modulation-of-activity-of-known-cytotoxic-ruthenium-iii-compound-kp418-UEr0Dbouvi
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9696-2
Publisher site
See Article on Publisher Site

Abstract

To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro. In addition, platinum compound cisplatin (CDDP) and ruthenium(III) compound NAMI-A were included in the experiments as reference compounds. Our results show that electroporation leads to increased cellular accumulation and cytotoxicity of KP418 in murine melanoma cell lines with low and high metastatic potential, B16-F1 and B16-F10, but not in murine fibrosarcoma cell line SA-1 in vitro which is probably due to variable effectiveness of ECT in different cell lines and tumors. Electroporation does not potentiate the cytotoxicity of KP418 as prominently as the cytotoxicity of CDDP. We also showed that the metastatic potential of cells which survived ECT with KP418 or NAMI-A does not change in vitro: resistance to detachment, invasiveness, and re-adhesion of cells after ECT is not affected. Experiments in murine tumor models B16-F1 and SA-1 showed that ECT with KP418 does not have any antitumor effect while ECT with CDDP induces significant dose-dependent tumor growth delay in the two tumor models used in vivo.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 24, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off