Modification of near-wall turbulence structure in a shear-driven three-dimensional turbulent boundary layer

Modification of near-wall turbulence structure in a shear-driven three-dimensional turbulent...  Most high Reynolds number flows of engineering interest are three-dimensional in nature. Key features of three-dimensional turbulent boundary layers (3DTBLs) include: non-colateral shear stress and strain rate vectors, and decreasing ratio of the shear stresses to the turbulent kinetic energy with increasing three-dimensionality. These are indicators that the skewing has a significant effect on the structure of turbulence. In order to further investigate the flow physics and turbulence structure of these complex flows, an innovative method for generating a planar shear-driven 3DTBL was developed. A specialized facility incorporating a relatively simple geometry and allowing for varying strengths of crossflow was constructed to facilitate studies where the skewing is decoupled from the confounding effects of streamwise pressure gradient and curvature. On-line planar particle image velocimetry (PIV) measurements and flow visualization results indicate that the experimental configuration generates the desired complex flow, which exhibits typical characteristics associated with 3DTBLs. Furthermore, spanwise shear results in modification of the near-wall turbulence structure. Analysis of near-wall flow visualization photographs revealed a reduction of mean streak length with increasing spanwise shear, while streak spacing remained relatively constant. In the most strongly sheared case, where the belt velocity is twice that of the freestream velocity, the mean streak length was reduced by approximately 50%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Modification of near-wall turbulence structure in a shear-driven three-dimensional turbulent boundary layer

Loading next page...
 
/lp/springer_journal/modification-of-near-wall-turbulence-structure-in-a-shear-driven-three-YsXsq2aPqY
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050226
Publisher site
See Article on Publisher Site

Abstract

 Most high Reynolds number flows of engineering interest are three-dimensional in nature. Key features of three-dimensional turbulent boundary layers (3DTBLs) include: non-colateral shear stress and strain rate vectors, and decreasing ratio of the shear stresses to the turbulent kinetic energy with increasing three-dimensionality. These are indicators that the skewing has a significant effect on the structure of turbulence. In order to further investigate the flow physics and turbulence structure of these complex flows, an innovative method for generating a planar shear-driven 3DTBL was developed. A specialized facility incorporating a relatively simple geometry and allowing for varying strengths of crossflow was constructed to facilitate studies where the skewing is decoupled from the confounding effects of streamwise pressure gradient and curvature. On-line planar particle image velocimetry (PIV) measurements and flow visualization results indicate that the experimental configuration generates the desired complex flow, which exhibits typical characteristics associated with 3DTBLs. Furthermore, spanwise shear results in modification of the near-wall turbulence structure. Analysis of near-wall flow visualization photographs revealed a reduction of mean streak length with increasing spanwise shear, while streak spacing remained relatively constant. In the most strongly sheared case, where the belt velocity is twice that of the freestream velocity, the mean streak length was reduced by approximately 50%.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 19, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off