Models for Spatially Dependent Missing Data

Models for Spatially Dependent Missing Data Most hedonic pricing studies using transaction data employ only sold properties. Since the properties sold during any year or even decade represent only a fraction of all properties, this approach ignores the potentially valuable information content of unsold properties which have known characteristics. In fact, explanatory variable information on house characteristics for all properties, sold and unsold, are often available from assessors. We set forth an estimation approach that predicts missing values of the dependent variable when the sample data exhibit spatial dependence. Employing information on the housing characteristics of both sold and unsold properties can improve prediction, increase estimation efficiency for the missing-at-random case, and reduce self-selection bias in the non-missing-at-random case. We demonstrate these advantages with a Monte Carlo experiment as well as with actual housing data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Models for Spatially Dependent Missing Data

Loading next page...
 
/lp/springer_journal/models-for-spatially-dependent-missing-data-Exy0n0PsYd
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1023/B:REAL.0000035312.82241.e4
Publisher site
See Article on Publisher Site

Abstract

Most hedonic pricing studies using transaction data employ only sold properties. Since the properties sold during any year or even decade represent only a fraction of all properties, this approach ignores the potentially valuable information content of unsold properties which have known characteristics. In fact, explanatory variable information on house characteristics for all properties, sold and unsold, are often available from assessors. We set forth an estimation approach that predicts missing values of the dependent variable when the sample data exhibit spatial dependence. Employing information on the housing characteristics of both sold and unsold properties can improve prediction, increase estimation efficiency for the missing-at-random case, and reduce self-selection bias in the non-missing-at-random case. We demonstrate these advantages with a Monte Carlo experiment as well as with actual housing data.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off