Modelling spatial dynamics of fish

Modelling spatial dynamics of fish Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Modelling spatial dynamics of fish

Loading next page...
 
/lp/springer_journal/modelling-spatial-dynamics-of-fish-xK0zxShB7l
Publisher
Springer Journals
Copyright
Copyright © 1998 by Chapman and Hall
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1008864517488
Publisher site
See Article on Publisher Site

Abstract

Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off