Modelling retrieval models in a probabilistic relational algebra with a new operator: the relational Bayes

Modelling retrieval models in a probabilistic relational algebra with a new operator: the... This paper presents a probabilistic relational modelling (implementation) of the major probabilistic retrieval models. Such a high-level implementation is useful since it supports the ranking of any object, it allows for the reasoning across structured and unstructured data, and it gives the software (knowledge) engineer control over ranking and thus supports customisation. The contributions of this paper include the specification of probabilistic SQL (PSQL) and probabilistic relational algebra (PRA), a new relational operator for probability estimation (the relational Bayes), the probabilistic relational modelling of retrieval models, a comparison of modelling retrieval with traditional SQL versus modelling retrieval with PSQL, and a comparison of the performance of probability estimation with traditional SQL versus PSQL. The main findings are that the PSQL/PRA paradigm allows for the description of advanced retrieval models, is suitable for solving large-scale retrieval tasks, and outperforms traditional SQL in terms of abstraction and performance regarding probability estimation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Modelling retrieval models in a probabilistic relational algebra with a new operator: the relational Bayes

Loading next page...
 
/lp/springer_journal/modelling-retrieval-models-in-a-probabilistic-relational-algebra-with-ENmWXD6v0r
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0073-y
Publisher site
See Article on Publisher Site

Abstract

This paper presents a probabilistic relational modelling (implementation) of the major probabilistic retrieval models. Such a high-level implementation is useful since it supports the ranking of any object, it allows for the reasoning across structured and unstructured data, and it gives the software (knowledge) engineer control over ranking and thus supports customisation. The contributions of this paper include the specification of probabilistic SQL (PSQL) and probabilistic relational algebra (PRA), a new relational operator for probability estimation (the relational Bayes), the probabilistic relational modelling of retrieval models, a comparison of modelling retrieval with traditional SQL versus modelling retrieval with PSQL, and a comparison of the performance of probability estimation with traditional SQL versus PSQL. The main findings are that the PSQL/PRA paradigm allows for the description of advanced retrieval models, is suitable for solving large-scale retrieval tasks, and outperforms traditional SQL in terms of abstraction and performance regarding probability estimation.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2008

References

  • Probabilistic models of information retrieval based on measuring the divergence from randomness
    Amati, G.; van Rijsbergen, C.J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off