Modeling the Effects of Biogenic NOX Emissions on the South African Highveld and Waterberg Regions

Modeling the Effects of Biogenic NOX Emissions on the South African Highveld and Waterberg Regions The Highveld and Waterberg regions in South Africa contain extensive coal fields and therefore have a high concentration of coal-fired power stations. Previous studies assessed the impact of atmospheric deposition of S- and N-containing species from anthropogenic sources in the region but did not include the effect of biogenic emissions. This study models biogenic NOX soil emissions for the regions and includes them in an atmospheric dispersion model to study the effects of biogenic emission on nitrogen deposition rates. Simulated sulfur deposition rates for the Highveld area are also reported on. Anthropogenic and biogenic sulfur and nitrogen emission sources were inventoried for the Highveld and Waterberg regions. Using previous work by Yienger and Levy, biogenic soil NOX emissions were quantified by constructing models for both areas using land use data, rainfall data, and atmospheric ground level temperatures from CALMET data. A CALPUFF dispersion model was used to predict deposition rates for S- and N-containing species with and without biogenic NOx emissions to determine the impact of biogenic emissions for the Highveld. As rainfall is highly variable in the region, meteorological data representative of high, average, and low rainfall years was used to determine the effect of rainfall on deposition rates for the various species. The biogenic NOx made up 3.96, 4.14, and 3.34% of total released NOx for 2001 (average rainfall), 2003 (low rainfall), and 2010 (high rainfall), respectively. Dry nitrogen deposition rates were affected most by the biogenic component, adding from 1.7 to 6.2% at various receptor locations. Wet deposition rates were affected very little (0.13 to 0.75%). Effect on total nitrogen deposition rates ranged from 0.32 to 1.77%. Biogenic emissions for the Waterberg area, being more arid, were calculated to be only 2.3% of total NOx emissions for the area and accordingly have little effect on deposition rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water, Air, Soil Pollution Springer Journals

Modeling the Effects of Biogenic NOX Emissions on the South African Highveld and Waterberg Regions

Loading next page...
 
/lp/springer_journal/modeling-the-effects-of-biogenic-nox-emissions-on-the-south-african-pSDZ7yu8qH
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
ISSN
0049-6979
eISSN
1573-2932
D.O.I.
10.1007/s11270-017-3526-y
Publisher site
See Article on Publisher Site

Abstract

The Highveld and Waterberg regions in South Africa contain extensive coal fields and therefore have a high concentration of coal-fired power stations. Previous studies assessed the impact of atmospheric deposition of S- and N-containing species from anthropogenic sources in the region but did not include the effect of biogenic emissions. This study models biogenic NOX soil emissions for the regions and includes them in an atmospheric dispersion model to study the effects of biogenic emission on nitrogen deposition rates. Simulated sulfur deposition rates for the Highveld area are also reported on. Anthropogenic and biogenic sulfur and nitrogen emission sources were inventoried for the Highveld and Waterberg regions. Using previous work by Yienger and Levy, biogenic soil NOX emissions were quantified by constructing models for both areas using land use data, rainfall data, and atmospheric ground level temperatures from CALMET data. A CALPUFF dispersion model was used to predict deposition rates for S- and N-containing species with and without biogenic NOx emissions to determine the impact of biogenic emissions for the Highveld. As rainfall is highly variable in the region, meteorological data representative of high, average, and low rainfall years was used to determine the effect of rainfall on deposition rates for the various species. The biogenic NOx made up 3.96, 4.14, and 3.34% of total released NOx for 2001 (average rainfall), 2003 (low rainfall), and 2010 (high rainfall), respectively. Dry nitrogen deposition rates were affected most by the biogenic component, adding from 1.7 to 6.2% at various receptor locations. Wet deposition rates were affected very little (0.13 to 0.75%). Effect on total nitrogen deposition rates ranged from 0.32 to 1.77%. Biogenic emissions for the Waterberg area, being more arid, were calculated to be only 2.3% of total NOx emissions for the area and accordingly have little effect on deposition rates.

Journal

Water, Air, Soil PollutionSpringer Journals

Published: Aug 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off