Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica

Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to... The productivity of Oilseed Brassica, one of the economically important crops of India, is seriously affected by the disease, Alternaria blight. The disease is mainly caused by two major necrotrophic fungi, Alternaria brassicae and Alternaria brassicicola which are responsible for significant yield losses. Till date, no resistant source is available against Alternaria blight, hence plant breeding methods can not be used to develop disease resistant varieties. Jasmonate mediated signalling pathway, which is known to play crucial role during defense response against necrotrophs, could be strengthened in Brassica plants to combat the disease. Since scanty information is available in Brassica-Alternaria pathosystems at molecular level therefore, in the present study efforts have been made to model jasmonic acid pathway in Arabidopsis thaliana to simulate the dynamic behaviour of molecular species in the model. Besides, the developed model was also analyzed topologically for investigation of the hubs node. COI1 is identified as one of the promising candidate genes in response to Alternaria and other linked components of plant defense mechanisms against the pathogens. The findings from present study are therefore informative for understanding the molecular basis of pathophysiology and rational management of Alternaria blight for securing food and nutritional security. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica

Loading next page...
 
/lp/springer_journal/modeling-of-the-jasmonate-signaling-pathway-in-arabidopsis-thaliana-t05lGPBEZW
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16884-3
Publisher site
See Article on Publisher Site

Abstract

The productivity of Oilseed Brassica, one of the economically important crops of India, is seriously affected by the disease, Alternaria blight. The disease is mainly caused by two major necrotrophic fungi, Alternaria brassicae and Alternaria brassicicola which are responsible for significant yield losses. Till date, no resistant source is available against Alternaria blight, hence plant breeding methods can not be used to develop disease resistant varieties. Jasmonate mediated signalling pathway, which is known to play crucial role during defense response against necrotrophs, could be strengthened in Brassica plants to combat the disease. Since scanty information is available in Brassica-Alternaria pathosystems at molecular level therefore, in the present study efforts have been made to model jasmonic acid pathway in Arabidopsis thaliana to simulate the dynamic behaviour of molecular species in the model. Besides, the developed model was also analyzed topologically for investigation of the hubs node. COI1 is identified as one of the promising candidate genes in response to Alternaria and other linked components of plant defense mechanisms against the pathogens. The findings from present study are therefore informative for understanding the molecular basis of pathophysiology and rational management of Alternaria blight for securing food and nutritional security.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off