Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica

Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to... The productivity of Oilseed Brassica, one of the economically important crops of India, is seriously affected by the disease, Alternaria blight. The disease is mainly caused by two major necrotrophic fungi, Alternaria brassicae and Alternaria brassicicola which are responsible for significant yield losses. Till date, no resistant source is available against Alternaria blight, hence plant breeding methods can not be used to develop disease resistant varieties. Jasmonate mediated signalling pathway, which is known to play crucial role during defense response against necrotrophs, could be strengthened in Brassica plants to combat the disease. Since scanty information is available in Brassica-Alternaria pathosystems at molecular level therefore, in the present study efforts have been made to model jasmonic acid pathway in Arabidopsis thaliana to simulate the dynamic behaviour of molecular species in the model. Besides, the developed model was also analyzed topologically for investigation of the hubs node. COI1 is identified as one of the promising candidate genes in response to Alternaria and other linked components of plant defense mechanisms against the pathogens. The findings from present study are therefore informative for understanding the molecular basis of pathophysiology and rational management of Alternaria blight for securing food and nutritional security. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica

Loading next page...
 
/lp/springer_journal/modeling-of-the-jasmonate-signaling-pathway-in-arabidopsis-thaliana-t05lGPBEZW
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16884-3
Publisher site
See Article on Publisher Site

Abstract

The productivity of Oilseed Brassica, one of the economically important crops of India, is seriously affected by the disease, Alternaria blight. The disease is mainly caused by two major necrotrophic fungi, Alternaria brassicae and Alternaria brassicicola which are responsible for significant yield losses. Till date, no resistant source is available against Alternaria blight, hence plant breeding methods can not be used to develop disease resistant varieties. Jasmonate mediated signalling pathway, which is known to play crucial role during defense response against necrotrophs, could be strengthened in Brassica plants to combat the disease. Since scanty information is available in Brassica-Alternaria pathosystems at molecular level therefore, in the present study efforts have been made to model jasmonic acid pathway in Arabidopsis thaliana to simulate the dynamic behaviour of molecular species in the model. Besides, the developed model was also analyzed topologically for investigation of the hubs node. COI1 is identified as one of the promising candidate genes in response to Alternaria and other linked components of plant defense mechanisms against the pathogens. The findings from present study are therefore informative for understanding the molecular basis of pathophysiology and rational management of Alternaria blight for securing food and nutritional security.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off