Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma

Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma The model and the results of the modeling of etching deep grooves in Si in Сl2/Ar plasma as a function of the energy of Cl+ and Ar+ incident ions (30–250 eV), taking into consideration the redeposition of the reaction products, which are removed from the groove bottom, are represented. The groove profiles with an aspect ratio (depth-to-width groove ratio) below 5 and Si atom yield coefficients per ion as a function of the incident ion energy were in agreement with the reference data. The profile evolution of the deep grooves with an aspect ratio (AR) of up to 10 at different energies of the incident ions is shown. The influence of the redeposition coefficient of the scattered particles and the shape of the mask on the groove profile is considered. The reasons for distorting the profile of the high-aspect grooves during their etching in the Сl2/Ar plasma are discussed. Russian Microelectronics Springer Journals

Modeling of the high aspect groove etching in Si in a Cl2/Ar mixture plasma

Loading next page...
Pleiades Publishing
Copyright © 2016 by Pleiades Publishing, Ltd.
Engineering; Electrical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial