Modeling of Ejecta Produced upon Hypervelocity Impacts

Modeling of Ejecta Produced upon Hypervelocity Impacts Each time a debris particle or a meteoroid strikes a satellite in orbit, a great amount of secondary particles is ejected in the neighborhood of the impact site. This phenomenon is important in particular for brittle materials, such as those used for solar arrays or thermal control paint. The secondary particles that do not impact other parts of the spacecraft are added to the primary debris population and hence increase the small debris particle flux. We describe an ejecta production model that gives the size and the velocity distribution of ejected particles as a function of primary impact parameters. The model has been used to explain the discrepancy between measurements and modeling of impact crater distribution on the solar arrays of the EuReCa spacecraft. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Space Debris Springer Journals

Modeling of Ejecta Produced upon Hypervelocity Impacts

Loading next page...
 
/lp/springer_journal/modeling-of-ejecta-produced-upon-hypervelocity-impacts-CwHQ8g0UE1
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Engineering; Automotive Engineering; Law of the Sea, Air and Outer Space; Astronomy, Observations and Techniques
ISSN
1388-3828
eISSN
1572-9664
D.O.I.
10.1023/A:1010021403591
Publisher site
See Article on Publisher Site

Abstract

Each time a debris particle or a meteoroid strikes a satellite in orbit, a great amount of secondary particles is ejected in the neighborhood of the impact site. This phenomenon is important in particular for brittle materials, such as those used for solar arrays or thermal control paint. The secondary particles that do not impact other parts of the spacecraft are added to the primary debris population and hence increase the small debris particle flux. We describe an ejecta production model that gives the size and the velocity distribution of ejected particles as a function of primary impact parameters. The model has been used to explain the discrepancy between measurements and modeling of impact crater distribution on the solar arrays of the EuReCa spacecraft.

Journal

Space DebrisSpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off