Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses

Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils... Soil components including organic matter (OM) are of vital importance in sorption/desorption kinetics of potentially toxic trace elements (PTEs), e.g., zinc (Zn). Nowadays, biochars as a source of OM have received increased attention because of their potential for improving soil properties. Effect of wheat straw biochar (0, 1.5 and 3% w/w) and zinc levels (0 and 10 mg Zn kg−1 soil as ZnSO4·7H2O) on Zn desorption kinetics was evaluated in an incubation experiments with agricultural, rangeland and forest soils. There was a rapid desorption rate during the first 2 h, followed by a slower rate during the next 14 h in all soil types. High rates of Zn desorption were observed in Zn-treated soils. In all soil types, biochar reduced Zn desorption, whereas, Zn increased it. The highest amounts of Zn desorption in both no Zn-treated and Zn-treated soils corresponded to the forest soil followed by the rangeland and agricultural soils. The simple Elovich and two-constant rate models were the best models to describe Zn desorption from the soils. Biochar decreased the release of Zn to the soil solutions. Therefore, it may reduce the probable excessive amount of Zn uptake by plant root, transfer to food chain, Zn leaching to surface and subsurface waters and their possible risks to human health. These issues should be considered in management practices for different land uses under various Zn application strategies. Furthermore, evaluation of other levels/sources of biochar and Zn on desorption kinetics of Zn in soils of various land use types is recommended. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Earth Sciences Springer Journals

Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses

Loading next page...
 
/lp/springer_journal/modeling-desorption-kinetics-of-the-native-and-applied-zinc-in-biochar-08BtRxLkUI
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Hydrology/Water Resources; Geochemistry; Environmental Science and Engineering; Terrestrial Pollution; Biogeosciences
ISSN
1866-6280
eISSN
1866-6299
D.O.I.
10.1007/s12665-017-6895-z
Publisher site
See Article on Publisher Site

Abstract

Soil components including organic matter (OM) are of vital importance in sorption/desorption kinetics of potentially toxic trace elements (PTEs), e.g., zinc (Zn). Nowadays, biochars as a source of OM have received increased attention because of their potential for improving soil properties. Effect of wheat straw biochar (0, 1.5 and 3% w/w) and zinc levels (0 and 10 mg Zn kg−1 soil as ZnSO4·7H2O) on Zn desorption kinetics was evaluated in an incubation experiments with agricultural, rangeland and forest soils. There was a rapid desorption rate during the first 2 h, followed by a slower rate during the next 14 h in all soil types. High rates of Zn desorption were observed in Zn-treated soils. In all soil types, biochar reduced Zn desorption, whereas, Zn increased it. The highest amounts of Zn desorption in both no Zn-treated and Zn-treated soils corresponded to the forest soil followed by the rangeland and agricultural soils. The simple Elovich and two-constant rate models were the best models to describe Zn desorption from the soils. Biochar decreased the release of Zn to the soil solutions. Therefore, it may reduce the probable excessive amount of Zn uptake by plant root, transfer to food chain, Zn leaching to surface and subsurface waters and their possible risks to human health. These issues should be considered in management practices for different land uses under various Zn application strategies. Furthermore, evaluation of other levels/sources of biochar and Zn on desorption kinetics of Zn in soils of various land use types is recommended.

Journal

Environmental Earth SciencesSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off