Modeling and simulation of structural components in recursive closed-loop multibody systems

Modeling and simulation of structural components in recursive closed-loop multibody systems Passenger cars, transit buses, railroad vehicles, off-highway trucks, earth moving equipment and construction machinery contain structural and light-fabrications (SALF) components that are prone to excessive vibration due to rough terrains and work-cycle loads’ excitations. SALF components are typically modeled as flexible components in the multibody system allowing the analysts to predict elastic deformation and hence the stress levels under different loading conditions. Including SALF component in the multibody system typically generates closed-kinematic loops. This paper presents an approach for integrating SALF modeling capabilities as a flexible body in a general-purpose multibody dynamics solver that is based on joint-coordinates formulation with the ability to handle closed-kinematic loops. The spatial algebra notation is employed in deriving the spatial multibody dynamics equations of motion. The system kinematic topology matrix is used to project the Cartesian quantities into the joint subspace, leading to a condensed set of nonlinear equations with minimum number of generalized coordinates. The proposed flexible body formulation utilizes the component mode synthesis approach to reduce the large number of finite element degrees of freedom to a small set of generalized modal coordinates. The resulting reduced flexible body model has two main characteristics: the stiffness matrix is constant while the mass matrix depends on the elastic modal coordinates. A consistent set of pre-computed inertia shape integrals are identified and used to update the modal mass matrix at each time step. The implementation of the component mode synthesis approach in a closed-loop recursive multibody formulation is presented. The kinematic equations are modified to include the effect of the flexible body modal elastic coordinates. Also, modified constraint equations that include the effect of flexibility at the joint connections and the necessary details of the Jacobian matrix are presented. Baumgarte stabilization approach is used to stabilize the constraint equations without using iterative schemes. A sample results for flexible body impeded in a closed system will be presented to demonstrate the above mentioned approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multibody System Dynamics Springer Journals

Modeling and simulation of structural components in recursive closed-loop multibody systems

Loading next page...
 
/lp/springer_journal/modeling-and-simulation-of-structural-components-in-recursive-closed-8Nib1xZFoo
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Engineering; Vibration, Dynamical Systems, Control; Optimization; Electrical Engineering; Mechanical Engineering; Automotive Engineering
ISSN
1384-5640
eISSN
1573-272X
D.O.I.
10.1007/s11044-016-9546-3
Publisher site
See Article on Publisher Site

Abstract

Passenger cars, transit buses, railroad vehicles, off-highway trucks, earth moving equipment and construction machinery contain structural and light-fabrications (SALF) components that are prone to excessive vibration due to rough terrains and work-cycle loads’ excitations. SALF components are typically modeled as flexible components in the multibody system allowing the analysts to predict elastic deformation and hence the stress levels under different loading conditions. Including SALF component in the multibody system typically generates closed-kinematic loops. This paper presents an approach for integrating SALF modeling capabilities as a flexible body in a general-purpose multibody dynamics solver that is based on joint-coordinates formulation with the ability to handle closed-kinematic loops. The spatial algebra notation is employed in deriving the spatial multibody dynamics equations of motion. The system kinematic topology matrix is used to project the Cartesian quantities into the joint subspace, leading to a condensed set of nonlinear equations with minimum number of generalized coordinates. The proposed flexible body formulation utilizes the component mode synthesis approach to reduce the large number of finite element degrees of freedom to a small set of generalized modal coordinates. The resulting reduced flexible body model has two main characteristics: the stiffness matrix is constant while the mass matrix depends on the elastic modal coordinates. A consistent set of pre-computed inertia shape integrals are identified and used to update the modal mass matrix at each time step. The implementation of the component mode synthesis approach in a closed-loop recursive multibody formulation is presented. The kinematic equations are modified to include the effect of the flexible body modal elastic coordinates. Also, modified constraint equations that include the effect of flexibility at the joint connections and the necessary details of the Jacobian matrix are presented. Baumgarte stabilization approach is used to stabilize the constraint equations without using iterative schemes. A sample results for flexible body impeded in a closed system will be presented to demonstrate the above mentioned approach.

Journal

Multibody System DynamicsSpringer Journals

Published: Oct 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off