Modeling and experimental study of vanadium adsorption by iron-nanoparticle-impregnated activated carbon

Modeling and experimental study of vanadium adsorption by iron-nanoparticle-impregnated activated... Iron-nanoparticle-impregnated activated carbon (IrAC) nanocomposite was synthesized as a new vanadium adsorbent. The vanadium adsorption rate for commercial activated carbon (AC) and IrAC nanocomposite was investigated experimentally in a batch system. The vanadium adsorption rate for AC and IrAC was then modeled using a film–pore–surface diffusion model. The resulting equations were solved numerically by the line method using MATLAB. The main parameters such as the external (film) mass transfer coefficient, pore diffusion coefficient, and surface diffusion coefficient were determined by solving the model equations for different temperatures and agitation rates. The results show that external mass transfer and pore diffusion are the important factors for vanadium adsorption using AC. However, external mass transfer and pore and surface diffusion are the important steps for vanadium adsorption on IrAC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Modeling and experimental study of vanadium adsorption by iron-nanoparticle-impregnated activated carbon

Loading next page...
 
/lp/springer_journal/modeling-and-experimental-study-of-vanadium-adsorption-by-iron-emHAeioL0q
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2776-4
Publisher site
See Article on Publisher Site

Abstract

Iron-nanoparticle-impregnated activated carbon (IrAC) nanocomposite was synthesized as a new vanadium adsorbent. The vanadium adsorption rate for commercial activated carbon (AC) and IrAC nanocomposite was investigated experimentally in a batch system. The vanadium adsorption rate for AC and IrAC was then modeled using a film–pore–surface diffusion model. The resulting equations were solved numerically by the line method using MATLAB. The main parameters such as the external (film) mass transfer coefficient, pore diffusion coefficient, and surface diffusion coefficient were determined by solving the model equations for different temperatures and agitation rates. The results show that external mass transfer and pore diffusion are the important factors for vanadium adsorption using AC. However, external mass transfer and pore and surface diffusion are the important steps for vanadium adsorption on IrAC.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 22, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off