Modeling and Evaluating the Performance of River Sediment on Immobilizing Arsenic from Hydrothermally Altered Rock in Laboratory Column Experiments with Hydrus-1D

Modeling and Evaluating the Performance of River Sediment on Immobilizing Arsenic from... Large volumes of excavated rock are produced as a result of road and railway tunnel construction in Hokkaido, Japan. Due to the geological condition of this region, these rocks have often undergone hydrothermal alterations, causing them to contain elevated amounts of hazardous elements including arsenic (As). Therefore, these excavated rocks are potentially hazardous waste, and proper disposal methods are required. In this article, performance of unsaturated river sediment on immobilizing As from hydrothermally altered rock is evaluated using laboratory column experiments and Hydrus-1D. The results reveal that the river sediment significantly reduces As migration. Arsenic retarded by river sediment was observed in three patterns. The first was an adsorption onto minerals originally contained in the river sediment. The next pattern was a combination of reduction of As generation by oxidation of As bearing-minerals, irreversible adsorption, and adsorption onto newly precipitated Fe oxy-hydroxide/oxide. The last pattern led to a further depletion of As leached from the rock layer due to a shift in the majority of the As generation mechanism from dissolution to oxidation in combination with a low concentration of oxygen in the rock layer. These patterns were satisfactorily evaluated by a Hydrus-1D model with reversible and irreversible adsorptions. The information from this work is effective in designing and establishing a reasonable technique for the disposal of hydrothermally altered rocks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water, Air, Soil Pollution Springer Journals

Modeling and Evaluating the Performance of River Sediment on Immobilizing Arsenic from Hydrothermally Altered Rock in Laboratory Column Experiments with Hydrus-1D

Loading next page...
 
/lp/springer_journal/modeling-and-evaluating-the-performance-of-river-sediment-on-0X586xFBdA
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG, part of Springer Nature
Subject
Environment; Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts
ISSN
0049-6979
eISSN
1573-2932
D.O.I.
10.1007/s11270-017-3630-z
Publisher site
See Article on Publisher Site

Abstract

Large volumes of excavated rock are produced as a result of road and railway tunnel construction in Hokkaido, Japan. Due to the geological condition of this region, these rocks have often undergone hydrothermal alterations, causing them to contain elevated amounts of hazardous elements including arsenic (As). Therefore, these excavated rocks are potentially hazardous waste, and proper disposal methods are required. In this article, performance of unsaturated river sediment on immobilizing As from hydrothermally altered rock is evaluated using laboratory column experiments and Hydrus-1D. The results reveal that the river sediment significantly reduces As migration. Arsenic retarded by river sediment was observed in three patterns. The first was an adsorption onto minerals originally contained in the river sediment. The next pattern was a combination of reduction of As generation by oxidation of As bearing-minerals, irreversible adsorption, and adsorption onto newly precipitated Fe oxy-hydroxide/oxide. The last pattern led to a further depletion of As leached from the rock layer due to a shift in the majority of the As generation mechanism from dissolution to oxidation in combination with a low concentration of oxygen in the rock layer. These patterns were satisfactorily evaluated by a Hydrus-1D model with reversible and irreversible adsorptions. The information from this work is effective in designing and establishing a reasonable technique for the disposal of hydrothermally altered rocks.

Journal

Water, Air, Soil PollutionSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off